A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Zinc hyperaccumulation and uptake by Potentilla griffithii Hook. | LitMetric

Zinc hyperaccumulation and uptake by Potentilla griffithii Hook.

Int J Phytoremediation

School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China.

Published: March 2007

The ability of Potentilla griffithii Hook var. velutina Cardot to hypaeraccumulate zinc (Zn) was identified through field survey and hydroponic experiments. Our results showed that P. griffithii could be classified as a new Zn hyperaccumulator. Zn concentrations in the shoots of P. griffithii averaged 6250 mg kg(-1) (3870-8530 mg kg(-1)) growing in Zn-rich soils. The highest Zn concentration was observed in the leaves of P. griffithii at 22,990 mg kg(-1). The fact that P. griffithii was able to grow in a mining soil with a Zn concentration of 193,000 mg kg(-1) without showing a major sign of phytotoxicity demonstrated its high tolerance to Zn. When growing in hydroponic systems, P. griffithii accumulated a maximum 26700 mg kg(-1) zinc concentration in the shoots, indicating the ability of this species to effectively take up and translocate Zn. Translocation factors (the ratio of Zn concentration in shoot to root) of 1.1 to 1.6 were obtained. Compared to the control, dry biomass of P. griffithii in 160 mg L(-1) Zn treatment increased 66.6% (P < 0.05). The time-course experiment showed that the maximum Zn concentration at 100 mg L(-1) Zn treatment was found at 16 d, much later than that of the 10 mg L(-1) Zn treatment, which might be an attribution of a accumulating mechanism or detoxification of a plant. The report of a new Zn hyperaccumulator provides a new plant species for the phytoremediation of contaminated soil and for the research on mechanisms of Zn hyperaccumulation in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226510600992865DOI Listing

Publication Analysis

Top Keywords

l-1 treatment
12
griffithii
8
potentilla griffithii
8
griffithii hook
8
kg-1
5
concentration
5
zinc hyperaccumulation
4
hyperaccumulation uptake
4
uptake potentilla
4
hook ability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!