The ultrastructure of the parasitophorous vacuole formed by Leishmania major.

J Parasitol

Department of Biological Sciences, Chicago State University, 9501 South King Drive, Chicago, Illinois 60628, USA.

Published: December 2006

AI Article Synopsis

Article Abstract

Protozoan parasites of Leishmania spp. invade macrophages as promastigotes and differentiate into replicative amastigotes within parasitophorous vacuoles. Infection of inbred strains of mice with Leishmania major is a well-studied model of the mammalian immune response to Leishmania species, but the ultrastructure and biochemical properties of the parasitophorous vacuole occupied by this parasite have been best characterized for other species of Leishmania. We examined the parasitophorous vacuole occupied by L. major in lymph nodes of infected mice and in bone marrow-derived macrophages infected in vitro. At all time points after infection, single L. major amastigotes were wrapped tightly by host membrane, suggesting that amastigotes segregate into separate vacuoles during replication. This small, individual vacuole contrasts sharply with the large, communal vacuoles occupied by Leishmania amazonensis. An extensive survey of the literature revealed that the single vacuoles occupied by L. major are characteristic of those formed by Old World species of Leishmania, while New World species of Leishmania form large vacuoles occupied by many amastigotes.

Download full-text PDF

Source
http://dx.doi.org/10.1645/GE-841R.1DOI Listing

Publication Analysis

Top Keywords

parasitophorous vacuole
12
species leishmania
12
vacuoles occupied
12
leishmania
8
leishmania major
8
leishmania species
8
vacuole occupied
8
occupied major
8
major
5
vacuoles
5

Similar Publications

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

The current study provides the first ultrastructural observations on the intraerythrocytic stages of so-called Haemogregarina damiettae and their cytopathological effects on the infected erythrocytes (IEs) in addition to the recording of new morphometric data. The intraerythrocytic stages are attributed to the immature forms or trophozoites (Ts), and mature gamonts (Gs). Ts are typically bowling-bottle shaped with nucleus (TN) occupying its globose part, while Gs are typically banana- shaped.

View Article and Find Full Text PDF

An intracellular protozoan, the Apicomplexan parasite () infects nucleated cells, in which it triggers the formation of a specialized membrane-confined cytoplasmic vacuole, named the parasitophorous vacuole (PV). One of the most prominent events in the parasite's intracellular life is the congregation of the host cell mitochondria around the PV. However, the significance of this event has remained largely unsolved since the parasite itself possesses a functional mitochondrion, which is essential for its replication.

View Article and Find Full Text PDF

A light and electron microscopic study of skin biopsies taken from 9 patients with ulcerative leishmaniasis of both sexes aged from 14 to 26 years in the territory of the Republic of Azerbaijan was carried out. Based on clinical, morphological and electron microscopic parameters, all patients were diagnosed with ulcerative cutaneous anthroponotic leishmaniasis (Leishmania (L.) tropica).

View Article and Find Full Text PDF
Article Synopsis
  • The obligate intracellular parasite replicates within a compartment called the parasitophorous vacuole (PV) and utilizes a protein ingestion pathway to take in nutrients from the host cell's cytosol, initiated by the protein GRA14.
  • A genome-wide CRISPR screen revealed that mutants lacking components of this ingestion pathway (GRA14, CPL, or CRT) are forced to rely more on alternative metabolic pathways to survive, such as pyrimidine and fatty acid biosynthesis.
  • Analysis showed that these ingestion-deficient mutants had lower levels of key nutrients and growth defects when amino acids were scarce, indicating that the ingestion pathway plays a crucial role in nutrient acquisition during resource-limited conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!