A series of DMAP-stabilized (DMAP=4-dimethylaminopyridine) N-silylphosphoranimine cations [DMAPPR(2)==NSiMe(3)](+), bearing R=Cl ([8](+)), Me ([10 a](+)), Me/Ph ([10 b](+)), Ph ([10 c](+)), and OCH(2)CF(3) ([10 d](+)) substituents, have been synthesized from the reactions of the parent phosphoranimines Cl(3)P==NSiMe(3) (3) and XR(2)P==NSiMe(3) (X=Cl (9), Br (11); R=Me (9 a and 11 a), Me/Ph (9 b and 11 b), Ph (9 c and 11 c), and OCH(2)CF(3) (9 d and 11 d)) with DMAP and silver salts as halide abstractors. Reactions in the absence of silver salts yield the corresponding cations, with halide counterions. The stability of the salts is highly dependent on the phosphoranimine substituent and the nature of the counteranion, such that electron-withdrawing substituents and non-coordinating anions yield the most stable salts. X-ray structural determination of the cations reveal extremely short phosphoranimine P--N bond lengths for the cations [8](+) and [10 d](+) (1.47-1.49 A) in which electron-withdrawing substituents are present and a longer phosphoranimine P--N length for the cation [10 a](+) (1.53 A) in which electron-donating substituents are present. Very wide bond angles at nitrogen are observed for the salts containing the cation [10 d](+) (158-166 degrees ) and indicate significant sp hybridization at the nitrogen centre.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200601452 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!