By using the generalized beam formulation, the scintillation index is derived and evaluated for cosh-Gaussian beams in a turbulent atmosphere. Comparisons are made to cos-Gaussian and Gaussian beam scintillations. The variations of scintillations against propagation length at different values of displacement and focusing parameters are examined. The dependence of scintillations on source size at different propagation lengths is also investigated. Two-dimensional scintillation index distributions covering the entire transverse receiver planes are given. From the graphic illustrations, it is found that in comparison to pure Gaussian beams cosh-Gaussian beams have lower on-axis scintillations at smaller source sizes and longer propagation distances. The focusing effect appears to impose more reduction on the cosh-Gaussian beam scintillations than those of the Gaussian beam. The distribution of the off-axis scintillation index values of the Gaussian beams appears to be uniform over the transverse receiver plane, whereas that of the cosh-Gaussian beam is arranged according to the position of the slanted axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.46.001099 | DOI Listing |
Effects of source beam, link, and oceanic turbulence parameters on the scintillation index and bit error rate (BER) performance of cosine (cos) and cosine-hyperbolic (cosh) Gaussian light beams have been investigated in order to improve wireless optical communication link performance in oceanic turbulence. The Nikishov and Nikishov power spectrum of oceanic water and extended Huygens Fresnel principle were used in our evaluations; the results were obtained via MATLAB. The scintillation index and BER were examined versus oceanic turbulence parameters, which are the rate of dissipation of mean-square temperature, the ratio of temperature and salinity contributions to the refractive index spectrum, and the dissipation rate of kinetic energy per unit fluid mass of fluid.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
June 2021
Minimization of the on-axis scintillation index of sinusoidal Gaussian beams is investigated by using the modified Rytov method in weak atmospheric turbulence for uplink/downlink of aerial vehicle-satellite laser communications. Among the focused cosh-Gaussian (cosh-G), cos-Gaussian (cos-G), annular, and Gaussian beams, a suitable displacement parameter for a cosh-G beam is determined that will minimize the scintillation index in uplink and downlink configurations. Then, for both uplink and downlink, the variations of the scintillation index against the propagation distance, source size, and zenith angle are examined and compared among themselves to show the optimum beam that possesses the minimum scintillation index.
View Article and Find Full Text PDFBased on the vector diffraction theory, this paper focuses on the focusing pattern of cosh-Gaussian beams with polarization mixing cosine phase modulation and discusses the focused optical intensity under different parameters in detail. The results that show by adjusting the polarization parameter , a tunable focal shift and a continuous shifting of focus on both directions of the optical axis can be achieved and the component that dominates the intensity distribution of the total field can be changed. When the tunable parameter is positive, the optical chain with tunable length can be structured by increasing .
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
March 2020
Vector diffraction theory is used to investigate the focusing properties of cosh-Gaussian beams with the power-exponent-phase vortex. The effects of the decentered parameter, the power order, and the topological charge on the normalized intensity distribution are examined. Results show that intensity distribution in the focal region can be altered significantly by the topological charge, the power order, and the decentered parameter.
View Article and Find Full Text PDFUsing the random phase screen approach, we carry out a simulation analysis of the probability of error performance of Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams. In our scenario, these beams are intensity-modulated by the randomly generated binary symbols of an electrical message signal and then launched from the transmitter plane in equal powers. They propagate through a turbulent atmosphere modeled by a series of random phase screens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!