Understanding and manipulating pancreatic beta-cell proliferation is a major challenge for pancreas biology and diabetes therapy. Recent studies have raised the possibility that human beta-cells can undergo dedifferentiation and give rise to highly proliferative mesenchymal cells, which retain the potential to redifferentiate into beta-cells. To directly test whether cultured beta-cells dedifferentiate, we applied genetic lineage tracing in mice. Differentiated beta-cells were heritably labeled using the Cre-lox system, and their fate in culture was followed. We provide evidence that mouse beta-cells can undergo dedifferentiation in vitro into an insulin-, pdx1-, and glut2-negative state. However, dedifferentiated beta-cells only rarely proliferate under standard culture conditions and are eventually eliminated from cultures. Thus, the predominant mesenchymal cells seen in cultures of mouse islets are not of a beta-cell origin.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db06-1654DOI Listing

Publication Analysis

Top Keywords

lineage tracing
8
beta-cells undergo
8
undergo dedifferentiation
8
mesenchymal cells
8
beta-cells
7
tracing evidence
4
evidence vitro
4
vitro dedifferentiation
4
dedifferentiation rare
4
rare proliferation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!