Attenuation of the blood flow response to physostigmine in the rat cortex deafferented from the basal forebrain.

Brain Res Bull

Laboratoire de Recherches Cérébrovasculaires, CNRS UPR 646, Université Paris 7, UFR Lariboisière-Saint Louis, IFR 6 Circulation-Lariboisière, Paris F-75010, France.

Published: April 2007

Previous functional investigations in rats failed to demonstrate that the classical cholinesterase inhibitor, physostigmine, can compensate for cortical cholinergic deficit induced by deafferentation from the nucleus basalis magnocellularis (NBM). As these studies were carried out shortly after NBM lesion (1-2 weeks), we sought to determine whether compensatory effects of physostigmine would appear at a longer postlesion time (3-5 weeks). Cerebral blood flow was used as a quantitative measure of brain function. At 3-5 weeks after unilateral NBM lesion, interhemispheric comparisons in resting conditions showed that the cortical cholinergic deficit was still present and that blood flow was lower in cortical areas on the lesion side, similarly to what was observed after 1-2 weeks, while basal blood flow in intact hemispheres remained unchanged. In contrast, under physostigmine, blood flow became significantly lower in deafferented cortical areas at 3-5 weeks postlesion time, whereas there were no significant interhemispheric differences in the short term. Comparisons with saline-infused rats showed reduced blood flow responses to physostigmine in forebrain regions, e.g. in the parietal cortex from 83% to 25% at 1-2 and 3-5 weeks postlesion, respectively. These changes cannot be ascribed to a global loss of reactivity, since responses in brainstem regions (medulla, cerebellum) remained unchanged statistically. The results demonstrate a reduced responsiveness to physostigmine at the longer postlesion time, and support the existence of a cholinosensitive mechanism antagonizing NBM influence. This mechanism may limit the activating effects of cholinergic agonists in the forebrain after NBM deafferentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2007.01.002DOI Listing

Publication Analysis

Top Keywords

blood flow
24
3-5 weeks
16
postlesion time
12
cortical cholinergic
8
cholinergic deficit
8
nbm lesion
8
1-2 weeks
8
longer postlesion
8
flow lower
8
cortical areas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!