Many important double-quantum recoupling techniques in solid-state NMR are classified as being gamma-encoded. This means that the phase of the double-quantum effective Hamiltonian, but not its amplitude, depends on the third Euler angle defining the orientation of the molecular spin system in the frame of the magic-angle-spinning rotor. In this paper, we provide closed analytical solutions for the dependence of the powder-average double-quantum-filtered signal on the recoupling times, within the average Hamiltonian approximation for gamma-encoded pulse sequences. The validity of the analytical solutions is tested by numerical simulations. The internuclear distance in a (13)C(2)-labelled retinal is estimated by fitting the analytical curves to experimental double-quantum data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2007.01.009DOI Listing

Publication Analysis

Top Keywords

double-quantum recoupling
8
analytical solutions
8
analytical
4
analytical theory
4
theory gamma-encoded
4
double-quantum
4
gamma-encoded double-quantum
4
recoupling sequences
4
sequences solid-state
4
solid-state nuclear
4

Similar Publications

Homonuclear J-couplings and heteronuclear structural constraints.

J Magn Reson

November 2024

Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States. Electronic address:

In magic angle spinning (MAS) experiments involving uniformly C/N labeled proteins, C-C and C-N dipolar recoupling experiments are now routinely used to measure direct dipole-dipole couplings that constrain distances and torsion angles and determine molecular structures. When the distances are short (<4 Å), the direct couplings dominate the evolution of the spin system, and the C-C and C-N J-couplings (scalar couplings) are ignored. However, for structurally interesting >4 Å distances, the dipolar and J-couplings are generally of comparable magnitude, and the variation in J must be included in order to optimize the precision of the experiment.

View Article and Find Full Text PDF

The development of robust NMR methodologies to probe dynamics on the atomic scale is vital to elucidate the close relations between structure, motion, and function in biological systems. Here, we present an automated protocol to measure, using magic-angle spinning NMR, the effective C-N dipolar coupling constants between multiple spin pairs simultaneously with high accuracy. We use the experimental dipolar coupling constants to quantify the order parameters of multiple C-N bonds in the thousands of identical copies of the coat protein in intact fd-Y21M filamentous bacteriophage virus and describe its overall dynamics on the submillisecond time scale.

View Article and Find Full Text PDF

Identification of phosphorus sites in amorphous LiPON thin film by observing internuclear proximities.

J Magn Reson

September 2023

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000 Lille, France. Electronic address:

Amorphous lithium phosphorus oxynitrides (LiPON), prepared by reactive magnetron sputtering, have become the electrolytes of choice for all-solid-state thin film microbatteries since its discovery in early 1990s. Nevertheless, there is still a lack of understanding of their atomic-level structure and its influence on ionic conductivity. Solid-state NMR spectroscopy represents a promising technique to determine the atomic-level structure of LiPON glasses but is challenging owing to its low sensitivity in the case of thin film materials.

View Article and Find Full Text PDF

Solid-State NMR Double-Quantum Dipolar Recoupling Enhanced by Additional Phase Modulation.

Chemphyschem

August 2023

National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.

Additional phase modulation (APM) is proposed to generally enhance the theoretical efficiency of homonuclear double-quantum (DQ) recoupling in solid-state NMR. APM applies an additional phase list to DQ recoupling in steps of an entire block. The sine-based phase list can enhance the theoretical efficiency by 15-30 %, from 0.

View Article and Find Full Text PDF

Comparison of through-space homonuclear correlations between quadrupolar nuclei in solids.

J Magn Reson

March 2023

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille 59000, France; Bruker Biospin, 34 rue de l'industrie, Wissembourg 67166, France. Electronic address:

Various two-dimensional (2D) homonuclear correlation experiments have been proposed to observe proximities between identical half-integer spin quadrupolar nuclei in solids. These experiments select either the single- or double-quantum coherences during the indirect evolution period, t. We compare here the efficiency and the robustness of the 2D double-quantum to single-quantum (DQ-SQ) and SQ-SQ homonuclear correlations for two half-integer spin quadrupolar isotopes subject to small chemical shift anisotropy (CSA): B with a nuclear spin I = 3/2 and Al with I = 5/2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!