Vanadium removal by metal (hydr)oxide adsorbents.

Water Res

National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan.

Published: April 2007

Vanadium is listed on the United States Environment Protection Agency (USEPA) candidate contaminant list # 2 (CCL2), and regulatory guidelines for vanadium exist in some US states. The USEPA requires treatability studies before making regulatory decisions on CCL2 contaminants. Previous studies have examined vanadium adsorption onto some metal hydroxides but not onto commercially available adsorbents. This paper briefly summarizes known vanadium occurrence in North American groundwater and assesses vanadium removal by three commercially available metal oxide adsorbents with different mineralogies. GTO (Dow) is TiO2 based and E-33 (Seven Trents) and GFH (US Filter) are iron based. Preliminary vanadate adsorption kinetics onto GFH, E-33 and GTO has been studied and the homogenous surface diffusion model (HSDM) is used to describe the adsorption kinetics data. The effects of pH, vanadium concentration, and volume/mass ratio are assessed. Vanadium adsorption decreases with increasing pH, with maximum adsorption capacities achieved in at pH 3-4. Results indicate that all adsorbents remove vanadium; GFH has the highest adsorption capacity, followed by GTO and E-33. Data are best fit with the Langmuir model rather than Freundlich isotherms. Both the sorption maxima (Xm) and binding energy constant (b) follow the trend GFH>GTO>E-33. Naturally occurring vanadium is also removed from Arizona ground water in rapid small-scale column tests (RSSCTs). Metal oxide adsorption technologies currently used for arsenic removal may also remove vanadium but not always with the same effectiveness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2007.01.002DOI Listing

Publication Analysis

Top Keywords

vanadium
11
vanadium removal
8
vanadium adsorption
8
metal oxide
8
adsorption kinetics
8
remove vanadium
8
adsorption
7
metal
4
removal metal
4
metal hydroxide
4

Similar Publications

The alga contains salt and heavy metals that are accumulated in algae poses a significant challenge to the safe use of algae in soil fertilization and other applications. This study examines the relevance of algal biomass as an environmentally friendly fertilizer, thereby contributing to sustainable coastal management practices. In this study, the hot and cold extraction method were done to obtain the Ulva rigida extract.

View Article and Find Full Text PDF

Targeted Docking of Localized Hydrogen Bond for Efficient and Reversible Zinc-Ion Batteries.

Angew Chem Int Ed Engl

January 2025

Central South University, material science and engineering, 932 Lushan Road, 410083, Changsha, CHINA.

Hydrogen bond (HB) chemistry, a pivotal feature of aqueous zinc-ion batteries, modulates electrochemical processes through weak electrostatic interactions among water molecules. However, significant challenges persist, including sluggish desolvation kinetics and inescapable parasitic reactions at the electrolyte-electrode interface, associated with high water activity and strong Zn2+-solvent coordination. Herein, a targeted localized HB docking mechanism is activated by the polyhydroxy hexitol-based electrolyte, optimizing Zn2+ solvation structures via dipole interaction and reconstructing interfacial HB networks through preferential parallel adsorption.

View Article and Find Full Text PDF

Multi-channel multiplexing metasurfaces have attracted considerable interest with the growing demand for multifunctional integration and enhanced communication capabilities. Dynamic tuning of electromagnetic waves with multiple degrees of freedom is a key approach to improving information processing capabilities. Metasurfaces with chiral meta-atoms and Janus metasurfaces with asymmetric transmission properties introduce new degrees of freedom for multiplexing technologies.

View Article and Find Full Text PDF

Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature.

View Article and Find Full Text PDF

Ultrafast Charge Carrier Dynamics in Vanadium Dioxide, VO: Nonequilibrium Contributions to the Photoinduced Phase Transitions.

J Phys Chem Lett

January 2025

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.

Vanadium oxide (VO) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO under low perturbation conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!