A geometrical model of dermal capillary clearance.

Math Biosci

University at Buffalo, State University of New York, Department of Chemical and Biological Engineering, Furnas Hall, Buffalo, NY 14260-4200, USA.

Published: August 2007

A new microscopic model is developed to describe the dermal capillary clearance process of skin permeants. The physiological structure is represented in terms of a doubly periodic array of absorbing capillaries. Convection-dominated transport in the blood flow within the capillaries is coupled with interstitial diffusion, the latter process being quantified via a slender-body-theory approach. Convection across the capillary wall and in the interstitial phase is treated as a perturbation which may be added to the diffusive transport. The model accounts for the finite permeability of the capillary wall as well as for the geometry of the capillary array, based on realistic values of physiological parameters. Calculated dermal concentration profiles for permeants having the size and lipophilicity of salicylic acid and glucose illustrate the power and general applicability of the model. Furthermore, validation of the model with published in vivo experimental results pertaining to human skin permeation of hydrocortisone is presented. The model offers the possibility for in-depth theoretical understanding and prediction of subsurface drug distribution in the human skin following topical application, as well as rates of capillary clearance into the systemic circulation. A simpler approach that treats the capillary bed as a homogeneously absorbing zone is also employed. The latter may be used in conjunction with the capillary exchange model to estimate measurable dermal transport and clearance parameters in a straightforward manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mbs.2006.10.012DOI Listing

Publication Analysis

Top Keywords

capillary clearance
12
capillary
8
dermal capillary
8
capillary wall
8
human skin
8
model
6
geometrical model
4
dermal
4
model dermal
4
clearance
4

Similar Publications

Background: Cholesterol gallstone disease (CGS) is often accompanied by gallbladder contraction dysfunction and chronic inflammation, but effective therapeutic options remain limited. This study investigates whether a low-intensity pulsed ultrasound (LIPUS) treatment can improve gallbladder motility and alleviate chronic inflammation while exploring the underlying mechanisms.

Methods: Gallbladder motility was assessed through in vitro and in vivo contraction tests, while bile condition was evaluated by observing bile crystal clearance.

View Article and Find Full Text PDF

Cellular expression of low-density lipoprotein receptor-related protein 1 and amyloid beta deposition in human and rat epileptogenic brain.

Exp Neurol

January 2025

Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands. Electronic address:

Decreased capillary expression of low-density lipoprotein receptor-related protein 1 (LRP1) has been linked to increased brain amyloid beta (Aβ) accumulation in Alzheimer's disease (AD). Aβ accumulation has also been observed in (a subset of) temporal lobe epilepsy (TLE) patients, suggesting a potential link between epilepsy and AD. This study examines cellular LRP1 expression in human and rat epileptogenic brain tissue to explore LRP1's role in epilepsy.

View Article and Find Full Text PDF

Haemodynamic management of septic shock.

Burns Trauma

January 2025

Australian and New Zealand Intensive Care-Research Centre, Monash University School of Public Health and Preventive Medicine, 553 St Kilda Road, Melbourne VIC 3004, Australia.

Septic shock is a significant challenge in the management of patients with burns and traumatic injuries when complicated by infection, necessitating prompt and effective haemodynamic support. This review provides a comprehensive overview of current strategies for vasopressor and fluid management in septic shock, with the aim to optimize patient outcomes. With regard to vasopressor management, we elaborate on the pharmacologic profiles and clinical applications of catecholamines, vasopressin derivatives, angiotensin II, and other vasoactive agents.

View Article and Find Full Text PDF

Background/objective: The Rs1 exon-1-del rat (Rs1KO) XLRS model shows normal retinal development until postnatal day 12 (P12) when small cystic spaces start to form in the inner nuclear layer. These spaces enlarge rapidly, peak at P15, and then collapse by P19.

Methods: We explored the possible involvement of Kir4.

View Article and Find Full Text PDF

The synovium is a loose connective tissue that separates the intra-articular (IA) joint compartments of all diarthrodial joints from the systemic circulation. It can be divided into two layers: the intima, a thin and cell-dense layer atop a more heterogeneous subintima, composed of collagen and various cell types. The subintima contains penetrating capillaries and lymphatic vessels that rapidly clear injected drugs from the joint space which may vary not only with drug size and charge but also with the microstructure and composition of the intima and subintima of the synovium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!