Although the rat is widely used in neurobehavioural research, the spatio-temporal receptive field properties of neurons in superficial layers of the superior colliculus are relatively unknown. Extracellular recordings were carried out in anesthetized Long Evans rats. Neurons in these layers had simple-like and complex-like receptive fields (RFs). Most cells (67%) had RFs showing band-pass and low-pass spatial frequency (SF) tuning profiles. Spatial band-pass profiles showed low optimal SF (mean=0.03 c/deg), low spatial resolution (mean=0.18 c/deg) and large spatial bandwidths (mean=2.3 octaves). More than two-thirds of the RFs (71%) were selective to orientation and only 11% were clearly direction selective. Nearly two-thirds of cells (68%) had band-pass temporal frequency (TF) tuning profiles with narrow bandwidths (mean=1.7 oct.) whereas the others showed low-pass TF tuning profiles. Temporal band-pass profiles had low optimal TFs (mean=3.5 c/s). Although some cells showed relatively low contrast thresholds (6%), most cells only responded to high contrast values (mean=38.2%). These results show that the spatial resolution of collicular cells is poor and that they respond mainly to highly contrasted moving stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2007.01.041 | DOI Listing |
Subcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
Stacking interactions are a recurring motif in supramolecular chemistry and biochemistry, where a persistent theme is a preference for parallel-displaced aromatic rings rather than face-to-face π-stacking. This is typically explained in terms of quadrupole-quadrupole interactions between the arene moieties but that interpretation is inconsistent with accurate calculations, which reveal that the quadrupolar picture is qualitatively wrong. At typical π-stacking distances, quadrupolar electrostatics may differ in sign from an exact calculation based on charge densities of the interacting arenes.
View Article and Find Full Text PDFChemSusChem
January 2025
CIC biomaGUNE, Heterogeneous Biocatalysis, Paseo Miramon 182, 20009, San Sebastian, SPAIN.
EEfficient methods for isolating N-glycans are essential to understanding the functions and characteristics of the entire N-glycome. Enzymatic release using PNGaseF is the most effective approach for releasing mammalian N-glycans for analytical purposes. However, the use of PNGaseF for preparative N-glycan isolation is precluded due to the enzyme's cost and limited stability.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Background: Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Radiation Oncology, Stanford University, Palo Alto, California, USA.
Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!