Introduction: One potential mechanism of ventilator-induced lung injury (VILI) is due to shear stresses associated with alveolar instability (recruitment/derecruitment). It has been postulated that the optimal combination of tidal volume (Vt) and positive end-expiratory pressure (PEEP) stabilizes alveoli, thus diminishing recruitment/derecruitment and reducing VILI. In this study we directly visualized the effect of Vt and PEEP on alveolar mechanics and correlated alveolar stability with lung injury.

Methods: In vivo microscopy was utilized in a surfactant deactivation porcine ARDS model to observe the effects of Vt and PEEP on alveolar mechanics. In phase I (n = 3), nine combinations of Vt and PEEP were evaluated to determine which combination resulted in the most and least alveolar instability. In phase II (n = 6), data from phase I were utilized to separate animals into two groups based on the combination of Vt and PEEP that caused the most alveolar stability (high Vt [15 cc/kg] plus low PEEP [5 cmH2O]) and least alveolar stability (low Vt [6 cc/kg] and plus PEEP [20 cmH2O]). The animals were ventilated for three hours following lung injury, with in vivo alveolar stability measured and VILI assessed by lung function, blood gases, morphometrically, and by changes in inflammatory mediators.

Results: High Vt/low PEEP resulted in the most alveolar instability and lung injury, as indicated by lung function and morphometric analysis of lung tissue. Low Vt/high PEEP stabilized alveoli, improved oxygenation, and reduced lung injury. There were no significant differences between groups in plasma or bronchoalveolar lavage cytokines or proteases.

Conclusion: A ventilatory strategy employing high Vt and low PEEP causes alveolar instability, and to our knowledge this is the first study to confirm this finding by direct visualization. These studies demonstrate that low Vt and high PEEP work synergistically to stabilize alveoli, although increased PEEP is more effective at stabilizing alveoli than reduced Vt. In this animal model of ARDS, alveolar instability results in lung injury (VILI) with minimal changes in plasma and bronchoalveolar lavage cytokines and proteases. This suggests that the mechanism of lung injury in the high Vt/low PEEP group was mechanical, not inflammatory in nature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151879PMC
http://dx.doi.org/10.1186/cc5695DOI Listing

Publication Analysis

Top Keywords

lung injury
28
alveolar instability
24
peep alveolar
16
alveolar stability
16
peep
13
alveolar
12
lung
11
positive end-expiratory
8
end-expiratory pressure
8
tidal volume
8

Similar Publications

Currently, the barrier to successful lung transplantation is ischemia and reperfusion injury, which can lead to the development of bronchiolitis obliterans. Paclitaxel and methotrexate are drugs known to inhibit cell proliferation and have anti-inflammatory effects, and the association of these drugs with cholesterol-rich nanoparticles has been shown to be beneficial in the treatment of other transplanted organs. Thirty-three male Sprague Dawley rats were divided into 3 groups: Basal group, no intervention; Control group, received only nanoparticles; Drug group, paclitaxel and methotrexate treatment.

View Article and Find Full Text PDF

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

The immune mechanisms of acute exacerbations of idiopathic pulmonary fibrosis.

Front Immunol

December 2024

Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) are the leading cause of mortality among patients with IPF. There is still a lack of effective treatments for AE-IPF, resulting in a hospitalization mortality rate as high as 70%-80%. To reveal the complicated mechanism of AE-IPF, more attention has been paid to its disturbed immune environment, as patients with IPF exhibit deficiencies in pathogen defense due to local immune dysregulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!