Background/aims: The role of antibody in hepatitis C virus (HCV) infection remains unclear although many reports attest to its role in viral clearance. Here we describe epitopes that are recognized by antibody present in the serum of infected patients and show that such epitopes can induce neutralizing antibodies.

Methods: Human serum containing hyperimmune anti-HCV IgG was used to extract epitopes from a library of synthetic peptides that encompassed the sequences of the E1 and E2 proteins of HCV genotype 1a H77. Peptides that were bound by IgG were identified by mass spectrometry. Assembly of these epitopes with a helper T cell determinant was then carried out in order to construct candidate epitope-based vaccines.

Results: Three distinct antigenic sites were defined in the E1E2 glycoproteins by epitopes identified by antibody present in infected individuals. Four of the peptide epitopes identified are conserved in at least three HCV genotypes and are bound by antibody present in the sera of chronically infected and convalescent individuals. Synthetic vaccines based on these epitopes elicited antibodies that are capable of (i) capturing HCV virions from the serum of viraemic patients and (ii) inhibiting HCV pseudovirus particle entry into Huh7 cells.

Conclusions: This approach exploits the information inherent in the binding sites of virus-specific antibodies and represents a novel method for the design of synthetic epitope-based vaccines.

Download full-text PDF

Source

Publication Analysis

Top Keywords

inherent binding
8
binding sites
8
sites virus-specific
8
virus-specific antibodies
8
epitopes identified
8
epitopes
7
hcv
6
exploiting inherent
4
antibodies design
4
design hcv
4

Similar Publications

Boron Designer Enzyme with a Hybrid Catalytic Dyad.

ACS Catal

December 2024

Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands.

Genetically encoded noncanonical amino acids can introduce new-to-nature activation modes into enzymes. While these amino acids can act as catalysts on their own due to their inherent chemical properties, interactions with adjacent residues in an enzyme, such as those present in natural catalytic dyads or triads, unlock a higher potential for designer enzymes. We incorporated a boron-containing amino acid into the protein scaffold RamR to create an active enzyme for the kinetic resolution of α-hydroxythioesters.

View Article and Find Full Text PDF

We present a series of articles proving the existence of a previously unknown mechanism of interaction between hematopoietic stem cells and extracellular double-stranded DNA (and, in particular, double-stranded DNA of the peripheral bloodstream), which explains the possibility of emergence and fixation of genetic information contained in double-stranded DNA of extracellular origin in hematopoietic stem cells. The concept of the possibility of stochastic or targeted changes in the genome of hematopoietic stem cells is formulated based on the discovery of new, previously unknown biological properties of poorly differentiated hematopoietic precursors. The main provisions of the concept are as follows.

View Article and Find Full Text PDF

Ru-OH-Zr Site over Metal-Organic Frameworks Boosts Coreactant Activation for Efficient Electrochemiluminescence.

Nano Lett

December 2024

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China.

Metal-organic frameworks (MOFs) are promising electrochemiluminescent (ECL) nanoemitters. Great endeavors have been made to optimize the inherent luminescent properties, yet most MOFs suffer from poor coreactant activation ability, resulting in limited ECL. Therefore, it is urgent to integrate and design efficient catalytic centers within MOFs.

View Article and Find Full Text PDF

Background And Objectives: Apheresis platelets products and plasma are essential for medical interventions, but both still have inherent risks associated with contamination and viral transmission. Platelet products are vulnerable to bacterial contamination due to storage conditions, while plasma requires extensive screening to minimize virus transmission risks. Here we investigate rapid irradiation to sterilizing doses for bacteria and viruses as an innovative pathogen reduction technology.

View Article and Find Full Text PDF

A "plug-and-display" nanoparticle based on attenuated outer membrane vesicles enhances the immunogenicity of protein antigens.

J Control Release

December 2024

The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc, Changzhou 213164, China.

As natural nanoparticle, the bacterial outer membrane vesicles (OMV) hold great potential in protein vaccines because of its self-adjuvant properties and good biocompatibility. However, the inherent immunotoxicity seriously hampers the application of OMV as protein antigens delivery carrier. Here, an attenuated OMV was constructed by elimination of the flagella protein from its surface and removal of the phosphate group of LPS at position one via gene-editing strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!