[Microbial denitrogenation of fuel oil].

Wei Sheng Wu Xue Bao

College of Life Sciences, Nankai University, Tianjin 300071, China.

Published: December 2006

The amount of organic nitrides contained in fuel oil is smaller than the one of organic sulfur compounds, but the existence of them is enough to affect the invariability of oil product greatly , and has a big effect on the color of oil. They also contribute to catalyst poisoning during the refining of crude oil, thus reducing the catalyzing rate of the catalyst and increasing process costs. Further more, some nitrogen organic compounds possess mutagenic and toxic activities. The combustion of these contaminants form nitrogen oxides (NOx), releasing of which to the air will cause the formation of acid rain and hence to air pollution. The classical hydroprocessing methods of nitrogen removal are costly and complicated, so the scientists are more and more interested in microbial denitrogenation. The aspects as follows are introduced, including the aromatic nitrogen compounds of fuel oil, the varieties of denitrogenation techincs, the classes of microbial denitrogenation and its biochemical pathways, molecular genetics developments of carbazole-degradative genes, and our opinion of the research direction in the future.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fuel oil
8
microbial denitrogenation
8
oil
5
[microbial denitrogenation
4
denitrogenation fuel
4
fuel oil]
4
oil] amount
4
amount organic
4
organic nitrides
4
nitrides contained
4

Similar Publications

Utilization of Chlorella vulgaris methyl ester blend with diethyl ether to mitigate emissions of an unaltered single cylinder ci engine.

Environ Sci Pollut Res Int

January 2025

Engine Testing Laboratory, Department of Automobile Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.

The present work emphasizes the viability of methyl ester production, characterization, and utilization of third-generation biofuel from Chlorella vulgaris microalgae. The presence of methyl oleate (CHO) in the Chlorella vulgaris methyl ester (CVME) algae signifies the existence of higher oxidation stability and prone to peroxidation. The single-stage transesterified CVME algae contains majorly (C-H) functional group trailed by (C = O), (C-O), (O-CH), (C-O-C) with the elemental compositions of 66.

View Article and Find Full Text PDF

A review on the role of nanocomposites for desulfurization of liquid transportation fuels.

J Environ Manage

January 2025

University of Stuttgart, Institute of Chemical Technology, Faculty of Chemistry, D-70550 Stuttgart, Germany; South Ural State University (National Research University), Chelyabinsk, Russian Federation. Electronic address:

Stringent sulfur removal regulations from transportation fuels from typical levels of 500 ppm to ultra-low levels of 10 ppm (BS-6 standard) present a critical challenge for the crude processing industry. This research thoroughly investigates emerging desulfurization technologies, with a focus on nanocomposite (NC) materials that exhibit exceptional sulfur removal efficiency. Advanced nanocomposite catalysts, such as (TBA)PWFe@TiO@PVA, have near-complete removal rates of 96-99% for complicated sulfur compounds like dibenzothiophene (DBT) and derivatives.

View Article and Find Full Text PDF

To mitigate the exhaustion of hydrocarbon fuels and the rise of pollutants, one can use biofuels in diesel engines for power generation. This study examines the possibility of enhancing the performance and reducing the pollutions of a compressed ignition engine using methyl ester made from cotton silk seed oil. This study aimed to assess the energy, energy efficiency, and emissions (3E) of the Kirloskar engine operating at 1800 rpm.

View Article and Find Full Text PDF

Indonesia currently calculates CO emissions from gas fuels using Tier 1 emission factors adopted from the Intergovernmental Panel on Climate Change (IPCC). However, this method may not accurately capture the country's specific emission characteristics. To address this, this study aims to derive country-specific CO emission factors for gas fuels, including liquefied petroleum gas (LPG), liquefied gas for vehicles (LGV), natural gas (NG), and liquefied natural gas (LNG), by analyzing fuel samples collected nationwide.

View Article and Find Full Text PDF

This study investigates the effects of varying exhaust gas recirculation (EGR) rates and temperatures on the combustion and emissions characteristics of a compression ignition engine fueled with hydrotreated vegetable oil (HVO). Understanding these effects is essential for optimizing renewable fuel applications in compression ignition engines, contributing to cleaner combustion, and supporting sustainable transportation initiatives. The experiments revealed that increasing the EGR rate to 20% not only reduces NOx emissions by approximately 25% but also increases smoke by around 15%, highlighting a trade-off between NOx and particulate matter control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!