Structural biology: analysis of 'downhill' protein folding.

Nature

Medical Research Council Centre for Protein Engineering, Medical Research Council Centre, Cambridge CB2 2QH, UK.

Published: February 2007

There is controversy as to whether homologues from the peripheral subunit binding domain family of small proteins fold 'downhill' (that is, non-cooperatively, in the absence of free-energy barriers between conformations) and whether they modulate their size for biological function. Sadqi et al. claim that Naf-BBL--a naphthylalanine-labelled, truncated version of this domain--folds in this way, on the grounds that they recorded a wide spread of melting temperatures of individual atoms measured by proton nuclear magnetic resonance (NMR) during their thermal denaturation. But their data are not of adequate quality to distinguish, within experimental error, between downhill folding and folding with a cooperative transition. Accordingly, their results offer no compelling evidence that Naf-BBL folds downhill, particularly as non-truncated, unmodified peripheral subunit binding domains seem to fold cooperatively.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature05643DOI Listing

Publication Analysis

Top Keywords

peripheral subunit
8
subunit binding
8
structural biology
4
biology analysis
4
analysis 'downhill'
4
'downhill' protein
4
protein folding
4
folding controversy
4
controversy homologues
4
homologues peripheral
4

Similar Publications

Neurons derived from induced pluripotent stem cells (h-iPSC-Ns) provide an invaluable model for studying the physiological aspects of human neuronal development under healthy and pathological conditions. However, multiple studies have demonstrated that h-iPSC-Ns exhibit a high degree of functional and epigenetic diversity. Due to the imprecise characterization and significant variation among the currently available maturation protocols, it is essential to establish a set of criteria to standardize models and accurately characterize and define the developmental properties of human neurons derived from iPSCs.

View Article and Find Full Text PDF

Background: Metabolic syndrome represents a pancreatic ductal adenocarcinoma (PDAC) risk factor. Metabolic alterations favor PDAC onset, which occurs early upon dysmetabolism. Pancreatic neoplastic lesions evolve within a dense desmoplastic stroma, consisting in abundant extracellular matrix settled by cancer associated fibroblasts (CAFs).

View Article and Find Full Text PDF

Objective: Immune-related pancytopenia (IRP) is characterized by autoantibody-mediated destruction or suppression of bone marrow cells, leading to pancytopenia. This study aimed to explore the role of TRAPPC4 (trafficking protein particle complex subunit 4) as a key autoantigen in IRP, including epitope identification and immune activation mechanisms.

Methods: A total of 90 participants were included in the study, divided into four groups: 30 newly diagnosed IRP patients, 25 IRP remission patients, 20 patients with control hematologic conditions (severe aplastic anemia [SAA] and myelodysplastic syndrome [MDS]), and 15 healthy controls.

View Article and Find Full Text PDF

Thymol inhibits ergosterol biosynthesis in Nakaseomyces glabratus, but differently from azole antifungals.

J Mycol Med

December 2024

Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

Introduction: Nakaseomyces glabratus is considered a high priority of attention according to WHO, and also is an important yeast species due to its high rate of intrinsic/acquired resistance against fluconazole. This study aimed at the possible mechanisms of action of thymol, as the promising new antifungal agent, in N. glabratus.

View Article and Find Full Text PDF

Genetic and clinical spectrum of steroid-resistant nephrotic syndrome with nuclear pore gene mutation.

Pediatr Nephrol

January 2025

Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.

Background: Steroid-resistant nephrotic syndrome (SRNS) is insensitive to steroid therapy and overwhelmingly progresses to kidney failure (KF), the known pathogenic genes of which include key subunits of the nuclear pore complex (NPC), a less-recognized contributor to glomerular podocyte injury.

Methods: After analyzing their clinical characterizations and obtaining parental consent, whole-exome sequencing (WES) was performed on patients with SRNS. Several nucleoporin (NUP) biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing from white cells of peripheral blood, minigene assay, immunohistochemical (IHC) staining, and electron microscopy (EM) ultrastructure observation of kidney biopsy, as well as multiple in silico prediction tools, including 3D protein modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!