Spontaneous retinal waves during development are thought to provide an instructive signal for precise retinotopic mapping by correlating the activity of neighboring retinal ganglion cells. In mutant mice (beta2-/-) that lack correlated waves, retinocollicular map refinement is impaired. In vivo recordings reveal that neurons in the superior colliculus of beta2-/- mice have large receptive fields and low peak visual responses, resulting in a conservation of total integrated response. We find that this "response homeostasis" is maintained on a cell-by-cell basis, and argue that it does not depend on regulation from the visual cortex during adulthood. Instead, in vitro recordings show that homeostasis arises from the conservation of total synaptic input from the retina, and that it is maintained via different mechanisms over development. In the absence of correlated retinal waves, beta2-/- neurons sample a larger number of weaker retinal inputs relative to controls after the first postnatal week. Once retinal waves are restored, developmental learning rules and homeostasis drive refinement so that fewer, stronger synapses are retained, as in wild-type mice, but from a larger retinal area. Homeostasis in neurons has been shown previously to regulate the gain of synaptic transmission in response to perturbations of activity. Our results suggest that during the development of sensory maps, a unique consequence of homeostatic mechanisms is the precise shaping of neuronal receptive fields in conjunction with activity-dependent competition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673732 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.4383-06.2007 | DOI Listing |
Exp Eye Res
January 2025
Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China. Electronic address:
Senescent retinal pigment epithelial cells play a key role in neovascular age-related macular degeneration (nAMD); however, the mechanisms underlying the angiogenic ability of these cells remain unclear. Herein, we investigated the effects of the senescent adult retinal pigment epithelial cell line-19 (ARPE-19) on wound healing, cell migration and survival, and tube formation abilities of human umbilical vein endothelial cells (HUVECs). Additionally, we used Brown Norway rats to establish a laser-induced choroidal neovascularization (CNV) model for further nAMD-related studies.
View Article and Find Full Text PDFIn the early stages of retinal development, a form of correlated activity known as retinal waves causes periodic depolarizations of immature retinal ganglion cells (RGCs). Retinal waves are crucial for refining visual maps in the brain's retinofugal targets and for the development of retinal circuits underlying feature detection, such as direction selectivity. Yet, how waves alter gene expression in immature RGCs is poorly understood, particularly at the level of the many distinct types of RGCs that underlie the retina's ability to encode diverse visual features.
View Article and Find Full Text PDFOphthalmic Physiol Opt
December 2024
Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.
Purpose: The aim of this study was to investigate changes in the light-adapted (LA) electroretinogram (ERG) associated with paediatric amblyopia.
Method: A total of 220 eyes from 81 postoperative paediatric cataract patients and 29 healthy children were enrolled in four groups, namely controls, unilaterally amblyopic eyes, non-amblyopic fellow eyes and bilaterally affected eyes. Differences in LA ERG variables (peak time and amplitude of a- and b-waves and photopic negative response [PhNR]) were compared across groups, as well as their associations with visual acuity and changes in axial length.
Orphanet J Rare Dis
November 2024
Department of Endocrinology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Genetics, Metabolism, Beijing, 100045, China.
Invest Ophthalmol Vis Sci
November 2024
Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., México.
Purpose: Growth hormone (GH) has neuroprotective effects that have not been evaluated in the mammalian visual system. This study tested the hypothesis that GH administration can promote retinal neuroprotection in an optic nerve crush (ONC) model in male rats.
Methods: The ON was compressed for 10 seconds, and bovine GH was injected concomitantly to injury for 14 days (0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!