Sinefungin (SIN), a natural S-adenosyl-L-methionine analog produced by Streptomyces griseolus, is a potent inhibitor of methyltransferases. We evaluated the effect of SIN on replication of vesicular stomatitis virus (VSV), a prototype of the nonsegmented negative-strand RNA viruses. The 241-kDa large polymerase (L) protein of VSV methylates viral mRNA cap structures at the guanine-N-7 (G-N-7) and ribose-2'-O (2'-O) positions. By performing transcription reactions in vitro, we show that both methylations are inhibited by SIN and that methylation was more sensitive at the G-N-7 than at 2'-O position. We further show that SIN inhibited growth of VSV in cell culture, reducing viral yield by 50-fold and diminishing plaque size. We isolated eight mutants that were resistant to SIN as judged by their growth characteristics. The SIN-resistant (SINR) viruses contained mutations in the L gene, the promoter for L gene expression provided by the conserved sequence elements of the G-L gene junction and the M gene. Five mutations resulted in amino acid substitutions to conserved regions II/III and VI of the L protein. For each mutant, we examined viral gene expression in cells and cap methylation in vitro. SINR mutants upregulated RNA synthesis in the presence of SIN, which may be responsible for their resistance. We also found that some SINR viruses with L gene mutations were defective in cap methylation in vitro, yet their methylases were less sensitive to SIN inhibition than those of the wild-type parent. These studies show that the VSV methylases are inhibited by SIN, and they define new regions of L protein that affect cap methylation. These studies also provide experimental evidence that inhibition of cap methylases is a potential strategy for development of antiviral therapeutics against nonsegmented negative-strand RNA viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866143PMC
http://dx.doi.org/10.1128/JVI.02681-06DOI Listing

Publication Analysis

Top Keywords

cap methylation
16
vesicular stomatitis
8
rna synthesis
8
mrna cap
8
sin
8
nonsegmented negative-strand
8
negative-strand rna
8
rna viruses
8
inhibited sin
8
sinr viruses
8

Similar Publications

Delta-6 fatty acid desaturases, which play key roles in the biosynthesis of polyunsaturated fatty acids (PUFAs), are membrane-associated enzymes that present significant challenges for isolation and purification, complicating their structural characterization. Here we report the identification and structure-function analysis of a novel Δ6 fatty acid desaturase (PmD6) from the marine alga Prorocentrum micans with substrate preference to α-linolenic acid (18:3n-3). Structural modeling revealed a mushroom-like structure of PmD6 formed by four transmembrane α-helices as a stem and three cytoplasmic domains as a cap.

View Article and Find Full Text PDF

2'- -ribose methylation of the first transcribed base (adenine or A in SARS-CoV-2) of viral RNA mimics the host RNAs and subverts the innate immune response. How nsp16, with its obligate partner nsp10, assembles on the 5'-end of SARS-CoV-2 mRNA to methylate the A has not been fully understood. We present a ∼ 2.

View Article and Find Full Text PDF

Long-acting injectable in situ forming implants: Impact of polymer attributes and API.

Int J Pharm

December 2024

Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA. Electronic address:

Poly(DL-lactide-co-glycolide) (PLGA) and N-methyl-2-pyrrolidone (NMP)-based in situ forming implants are liquid formulations that solidify through phase separation following injection into the body. Drug is dissolved or suspended in the final formulation liquid prior to injection. Depending on the polymers used, the depots formed can deliver drug over different periods of time.

View Article and Find Full Text PDF

Comprehensive genome annotation of the model ciliate Tetrahymena thermophila by in-depth epigenetic and transcriptomic profiling.

Nucleic Acids Res

December 2024

MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.

The ciliate Tetrahymena thermophila is a well-established unicellular model eukaryote, contributing significantly to foundational biological discoveries. Despite its acknowledged importance, current studies on Tetrahymena biology face challenges due to gene annotation inaccuracy, particularly the notable absence of untranslated regions (UTRs). To comprehensively annotate the Tetrahymena macronuclear genome, we collected extensive transcriptomic data spanning various cell stages.

View Article and Find Full Text PDF

Cryo-EM structure of Nipah virus L-P polymerase complex.

Nat Commun

December 2024

Beijing Life Science Academy, Beijing, China.

Nipah virus (NiV) is a non-segmented, negative-strand (NNS) RNA virus, belonging to Paramyxoviridae. The RNA polymerase complex, composed of large (L) protein and tetrameric phosphoprotein (P), is responsible for genome transcription and replication by catalyzing NTP polymerization, mRNA capping and cap methylation. Here, we determine the cryo-electron microscopy (cryo-EM) structure of fully bioactive NiV L-P polymerase complex at a resolution of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!