Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal genetic disorder that is characterized by segmental accelerated aging. The major causal mutation associated with HGPS triggers abnormal messenger RNA splicing of the lamin A gene leading to changes in the nuclear architecture. To date, two models have been proposed to explain how mutations in the lamin A gene could lead to HGPS, structural fragility and altered gene expression. We favor a compatible model that links HGPS to stem cell-driven tissue regeneration. In this model, nuclear fragility of lamin A-deficient cells increases apoptotic cell death to levels that exhaust tissues' ability for stem cell-driven regeneration. Tissue-specific differences in cell death or regenerative potential, or both, result in the tissue-specific segmental aging pattern seen in HGPS. We propose that the pattern of aging-related conditions present or absent in HGPS can provide insight into the genetic and environmental factors that contribute to normal aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/gerona/62.1.3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!