Regulation of protein trafficking by glycosylphosphatidylinositol valence in African trypanosomes.

J Eukaryot Microbiol

Department of Medical Microbiology & Immunology, University of Wisconsin Medical School, Madison, Wisconsin 53711, USA.

Published: September 2007

The structure, biosynthesis, and attachment of glycosylphosphatidylinositol (GPI) anchors were all first determined for the variant surface glycoprotein (VSG) of African trypanosomes, and all of the basic aspects of this work have been shown to be universal in eukaryotic organisms. However, the role of GPI anchors in protein trafficking within trypanosomes has lagged behind the more standard eukaryotic model systems such as yeast and polarized epithelial cells. Trypanosomes are also highly polarized cells in which all endocytosis and exocytosis intersect at a discrete domain of the plasma membrane, the flagellar pocket. Within these convergent pathways trafficking of GPI anchored proteins correlates strongly with valence: homodimeric VSG with two GPIs is stably incorporated into the cell surface coat, heterodimeric transferrin receptor with a single GPI is found in the flagellar pocket and is slowly delivered to the lysosome for degradation, and recombinant GPI minus VSG reporters are rapidly degraded in the lysosome. Here we summarize recent data confirming this correlation using a tool kit of recombinant GPI anchored reporters, including a reporter designed to be conditionally modulated between a GPI valence of one and two.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1550-7408.2006.00231.xDOI Listing

Publication Analysis

Top Keywords

protein trafficking
8
african trypanosomes
8
gpi anchors
8
flagellar pocket
8
gpi anchored
8
recombinant gpi
8
gpi
7
regulation protein
4
trafficking glycosylphosphatidylinositol
4
glycosylphosphatidylinositol valence
4

Similar Publications

Background: Transmembrane emp24 trafficking protein 3 (TMED3) is associated with the development of several tumors; however, whether TMED3 regulates the progression of prostate cancer remains unclear.

Materials And Methods: Short hairpin RNA was performed to repress TMED3 in prostate cancer cells (DU145 cells) and in a prostate cancer mice model to determine its function in prostate cancer and .

Results: In the present study, we found that TMED3 was highly expressed in prostate cancer cells.

View Article and Find Full Text PDF

Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation.

View Article and Find Full Text PDF

Computational generation of cyclic peptide inhibitors using machine learning models requires large size training data sets often difficult to generate experimentally. Here we demonstrated that sequential combination of Random Forest Regression with the pseudolikelihood maximization Direct Coupling Analysis method and Monte Carlo simulation can effectively enhance the design pipeline of cyclic peptide inhibitors of a tumor-associated protease even for small experimental data sets. Further studies showed that such -evolved cyclic peptides are more potent than the best peptide inhibitors previously developed to this target.

View Article and Find Full Text PDF

CCN3: lactational bone booster.

Cell Biosci

December 2024

USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, USA.

Mammalian reproduction requires that nursing mothers transfer large amounts of calcium to their offspring through milk. Meeting this demand requires the activation of a brain-breast-bone circuit during lactation that coordinates changes in systemic hormones, dietary calcium intake, skeletal turnover, and calcium transport into milk. Classically, increased bone resorption via increased parathyroid hormone-related protein and low estrogen levels is the main source of calcium for milk production during lactation.

View Article and Find Full Text PDF

Integrated hepatic transcriptomics and metabolomics identify Pck1 as a key factor in the broad dysregulation induced by vehicle pollutants.

Part Fibre Toxicol

December 2024

Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.

Background: Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!