Silica nanoparticles for controlled release applications have been produced by the reaction of tetramethylorthosilicate (TMOS) inside the water droplets of a water-in-oil microemulsion, under both acidic (pH 1.05) and basic (pH 10.85) conditions. In-situ FTIR measurements show that the addition of TMOS to the microemulsion results in the formation of silica as TMOS, preferentially located in the oil phase, diffuses into the water droplets. Once in the hydrophilic domain, hydrolysis occurs rapidly as a result of the high local concentration of water. Varying the pH of the water droplets from 1.05 to 10.85, however, considerably slows the hydrolysis reaction of TMOS. The formation of a dense silica network occurs rapidly under basic conditions, with IR indicating the slower formation of more disordered silica in acid. SAXS analysis of the evolving particles shows that approximately 11 nm spheres are formed under basic conditions; these are stabilized by a water/surfactant layer on the particle surface during formation. Under acidic conditions, highly uniform approximately 5 nm spheres are formed, which appear to be retained within the water droplets (approximately 6 nm diameter) and form an ordered micelle nanoparticle structure that exhibits sufficient longer-range order to generate a peak in the scattering at q approximately equal to 0.05 A-1. Nitrogen adsorption analysis reveals that high surface area (510 m2/g) particles with an average pore size of 1 nm are formed at pH 1.05. In contrast, base synthesis results in low surface area particles with negligible internal porosity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la0624283 | DOI Listing |
J Hazard Mater
January 2025
Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
Experiments were conducted in controlled laboratory conditions to determine the size-resolved CCN (Cloud Condensation Nuclei) activity of sub micrometer-sized aerosols containing nuclear fission products (CsI and CsOH) and abundant ambient inorganic aerosols ammonium sulphates ((NH)SO), ammonium chloride (NHCl), sodium nitrate (NaNO), and sodium chloride (NaCl). The presence of these atmospheric-relevant compounds internally mixed with fission product compounds has the potential to affect the capacity of ambient particulates of aerosols to absorb water and function as CCN. Once in the atmosphere, the dynamics of airborne radionuclides and subsequently their fate gets affected by dry and wet deposition processes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea.
Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Aerosols containing biological material (i.e., bioaerosols) impact public health by transporting toxins, allergens, and diseases and impact the climate by nucleating ice crystals and cloud droplets.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.
Slippery liquid-infused porous surfaces (SLIPSs) are a class of surface that offers low contact angle hysteresis and low tilt angle for water droplet shedding. This property also endows the surface with pinning-free evaporation, which in turn has been exploited for analyte concentration enrichment for Surface Enhanced Raman Spectroscopic applications and antibiofouling. Herein, we demonstrate a facile approach for creating SLIPS with low contact angle hysteresis and low tilt angle for water shedding by coating the equal-volume mixture of polydimethylsiloxane (PDMS) and silicone oil.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Changchun University, Changchun 130022, China. Electronic address:
This study developed a W/O/W emulsion gel encapsulating proanthocyanidins from Aronia melanocarpa (Michx.) Elliott (APC) using polyglycerol ricinoleate (PGPR) as the lipophilic emulsifier and sodium caseinate (NaCN)-alginate (Alg) as the hydrophilic emulsifier. The optimal preparation process was established based on particle size, zeta potential, phase separation, centrifugal stability, and microscopic morphology: 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!