The formation, morphology, and structure of two-dimensional Langmuir-Blodgett (LB) assemblies of octadecyltriazole (ODT)-based metal-containing oligomers presenting, in the case of iron, the spin-crossover phenomenon is studied with Brewster angle microscopy, IR dichroism, X-ray diffraction, and atomic force microscopy. Two processes occurring at the air-water interface are confirmed to dominate the mechanism of formation of these LB films, the instability of the coordination polymers at the air-water interface and recoordination of metal ions in the subphase at the interface during the LB deposition process. The Langmuir film allowing the LB film formation is mostly made of ODT. The films do present a lamellar structure in which the ODT molecules are tilted and incorporate coordinated isolated metal ions and oligomers of metal ions. The morphology of the LB films is globally flat but with a rather high roughness resulting from inhomogeneities related to phenomena occurring during the LB film formation. These observations are in agreement with the relative affinity of the metal ions with ODT and the relative stability of the coordination polymers at the air-water interface, which have been determined for the group Cu-Fe-Co-Ni.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la062207x | DOI Listing |
Langmuir
January 2025
School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, MH 416004, India.
In this study, we report the modification of a monolithic γ-aluminum oxy-hydroxide (γ-AlOOH) aerogel with cellulose nanofibers (CNFs) using the sol-gel method via supercritical drying. The optimized 2% CNF (w/w) results in a monolithic CNF-γ-AlOOH that is amorphous in nature, along with C-C and C-O-C functional groups. Transmission electron microscopy (TEM) images of the as-synthesized CNF-γ-AlOOH showed CNF embedded in the γ-AlOOH aerogel.
View Article and Find Full Text PDFInorg Chem
January 2025
Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China.
The rapid upsurge of metal-organic frameworks (MOFs) has sparked profound interest in their potential as proton conductors for proton exchange membrane fuel cells. However, proton-conducting behaviors of hydrophobic MOFs remain poorly understood compared with their hydrophilic counterparts, largely due to the absence of a microscopic phase separation structure akin to that found in Nafion membranes. Herein, we demonstrate a strategy for regulating the structures and proton conductivities of MOFs by separately incorporating hydrophobic -C(CF)- group alongside hydrophilic -O- and -SO- groups into organic ligands as linkers.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China.
Two novel 3D inorganic-organic hybrids based on [VO]/[VO] clusters, [Cu(bbpy)(VO)]·3HO () and [CuAg(pty)(VO)]·HO () (bbpy = 3,5-bis(1-benzimidazole) pyridine, pty = 4'-(4″-pyridyl)-2,2':6',2″-terpyridine), were isolated in the same POV/Cu/N-heterocycle ligand reaction systems. Hybrids and possess novel three-dimensional bimetallic frameworks derived from [VO]/[VO] clusters and Cu-organic complexes. In , bbpy ligands are grafted by Cu to a grid ribbon 2D sheet, which are connected with benzene-like [VO] to yield a 3D framework.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from the multilevel heterogeneous structures in biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, and low swelling ratio was fabricated through a water-induced phase separation and coordination cross-linking strategy. A dense heterogeneous architecture was developed by the integration of "rigid" quadridentate carboxyl-Zr coordination bonds and "soft" hydrophobic unit-rich regions featuring π-π stacking and cation-π interactions into the hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!