Eph receptors and their ephrin ligands assume various roles during central nervous system development. Several of these proteins are also expressed in the mature brain, and notably in the hippocampus, where EphA4 and ephrins have been shown to influence dendritic spine morphology and long-term potentiation (LTP). To examine the cellular and subcellular localization of EphA4 in adult rat ventral hippocampus, we used light and electron microscopic immunocytochemistry with a specific polyclonal antibody against EphA4. After immunoperoxidase labeling, EphA4 immunoreactivity was found to be enriched in the neuropil layers of CA1, CA3, and dentate gyrus. In all examined layers of these regions, myelinated axons, small astrocytic leaflets, unmyelinated axons, dendritic spines, and axon terminals were immunolabeled in increasing order of frequency. Neuronal cell bodies and dendritic branches were immunonegative. EphA4-labeled dendritic spines and axon terminals corresponded to 9-19% and 25-40% of the total number of spines and axon terminals, respectively. Most labeled spines were innervated by unlabeled terminals, but synaptic contacts between two labeled elements were seen. The vast majority of synaptic junctions made by labeled elements was asymmetrical and displayed features of excitatory synapses. Immunogold labeling of EphA4 was located mostly on the plasma membrane of axons, dendritic spines, and axon terminals, supporting its availability for surface interactions with ephrins. The dual preferential labeling of EphA4 on pre- or postsynaptic specializations of excitatory synapses in adult rat hippocampus is consistent with roles for this receptor in synaptic plasticity and LTP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.21263 | DOI Listing |
Neurol Neuroimmunol Neuroinflamm
March 2025
Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Germany.
Background And Objectives: Autoantibodies (aAbs) against glycine receptors (GlyRs) are mainly associated with the rare neurologic diseases stiff person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM). GlyR aAbs are also found in other neurologic diseases such as epilepsy. The aAbs bind to different GlyR α-subunits and, more rarely, also to the GlyR β-subunit.
View Article and Find Full Text PDFNeurobiol Pain
December 2024
Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Pharmacology, University of Oxford, Oxford, UK.
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, USA.
Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!