An anti-TAR RNA aptamer called R06, which binds tightly and specifically to the trans-activation responsive (TAR) element of the human immunodeficiency virus type 1 (HIV-1) through loop-loop interactions has been previously selected.(1) We used HIV-based retroviral vectors to express the R06 aptamer. Its synthesis was driven by the U16 snoRNA. We investigated the ability of this cassette to interfere with TAR-mediated transcription using HeLa P4 cells stably expressing the beta-galactosidase gene under the control of the HIV-1 5'LTR. We demonstrated that, upon HIV-1 infection, the beta-galactosidase activity was reduced in cells expressing the nucleolar U16-R06 transcript. The replication of HIV-1 in these cells was also reduced as shown by quantification of the HIV-1 protease gene 24 h post-infection. This effect was specific and related to the formation of R06 TAR complex as an aptamer with a mutated loop, which was no longer able to bind to TAR, did not show any effect. The nucleolus is likely a compartment of interest for targeting the TAR-protein complex responsible for the trans-activation of transcription of the HIV-1 genome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/rna.3.4.3811 | DOI Listing |
Sci Rep
January 2025
Sexually Transmitted and Bloodborne Infections Surveillance and Molecular Epidemiology, Sexually Transmitted and Bloodborne Infections Division at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, R3E 3L5, Canada.
Human Immunodeficiency Virus Type 1 (HIV) set-point viral load is a strong predictor of disease progression and transmission risk. A recent genome-wide association study in individuals of African ancestries identified a region on chromosome 1 significantly associated with decreased HIV set-point viral load. Knockout of the closest gene, CHD1L, enhanced HIV replication in vitro in myeloid cells.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.
SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA.
The bottleneck in enhanced sampling lies in finding collective variables that effectively accelerate protein conformational changes; true reaction coordinates that accurately predict the committor are the well-recognized optimal choice. However, identifying them requires unbiased natural reactive trajectories, which, paradoxically, require effective enhanced sampling. Using the generalized work functional method, we uncover that true reaction coordinates control both conformational changes and energy relaxation, enabling us to compute them from energy relaxation simulations.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Integrative Cell Biology Graduate Program, Loyola University Chicago, Maywood, Illinois, United States of America.
The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting.
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Epitope mapping has shown that early antibody responses are directed to easily accessible nonneutralizing epitopes on Env instead of bnAb epitopes. Autologously neutralizing antibody responses appear upon boosting, once immunodominant epitopes are saturated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!