Liver injury initiated by non-lethal doses of CCl(4) and thioacetamide (TA) progresses to hepatic failure and death of type 2 diabetic (DB) rats due to failed advance of liver cells from G(0)/G(1) to S-phase and inhibited tissue repair. Objective of the present study was to investigate cellular signaling mechanisms of failed cell division in DB rats upon hepatotoxicant challenge. In CCl(4)-treated non-diabetic (non-DB) rats, increased IL-6 levels, sustained activation of extracellular regulated kinases 1/2 (ERK1/2) MAPK, and sustained phosphorylation of retinoblastoma protein (p-pRB) via cyclin D1/cyclin-dependent kinase (cdk) 4 and cyclin D1/cdk6 complexes stimulated G(0)/G(1) to S-phase transition of liver cells. In contrast to the non-DB rats, CCl(4) administration led to lower plasma IL-6, decreased ERK1/2 activation, lower cyclin D1, and cdk 4/6 expression resulting in decreased p-pRB and inhibition of liver cell division in the DB rats. Furthermore, higher TGFbeta1 expression and p21 activation may also contribute to decreased p-pRB in DB rats compared to non-DB rats. Similarly, after TA administration to DB rats, down-regulation of cyclin D1 and p-pRB leads to markedly decreased advance of liver cells from G(0)/G(1) to S-phase and tissue repair compared to the non-DB rats. Hepatic ATP levels did not differ between the DB and non-DB rats obviating its role in failed tissue repair in the DB rats. In conclusion, decreased p-pRB may contribute to blocked advance of cells from G(0)/G(1) to S-phase and failed cell division in DB rats exposed to CCl(4) or TA, leading to progression of liver injury and hepatic failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2007.01.004 | DOI Listing |
Am J Physiol Gastrointest Liver Physiol
December 2018
Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee.
An impaired nitrergic system and altered redox signaling contribute to gastric dysmotility in diabetics. Our earlier studies show that NF-E2-related factor 2 (NRF2) and phase II antioxidant enzymes play a vital role in gastric neuronal nitric oxide synthase (nNOS) function. This study aims to investigate whether supplementation of sepiapterin (SEP), a precursor for tetrahydrobiopterin (BH) (a cofactor of NOS) via the salvage pathway, restores altered nitrergic systems and redox balance in spontaneous diabetic (DB) female rats.
View Article and Find Full Text PDFToxicology
April 2007
Department of Toxicology, College of Pharmacy, The University of Louisiana at Monroe, 700 University Avenue, Sugar Hall #306, Monroe, LA 71209-0470, USA.
Liver injury initiated by non-lethal doses of CCl(4) and thioacetamide (TA) progresses to hepatic failure and death of type 2 diabetic (DB) rats due to failed advance of liver cells from G(0)/G(1) to S-phase and inhibited tissue repair. Objective of the present study was to investigate cellular signaling mechanisms of failed cell division in DB rats upon hepatotoxicant challenge. In CCl(4)-treated non-diabetic (non-DB) rats, increased IL-6 levels, sustained activation of extracellular regulated kinases 1/2 (ERK1/2) MAPK, and sustained phosphorylation of retinoblastoma protein (p-pRB) via cyclin D1/cyclin-dependent kinase (cdk) 4 and cyclin D1/cdk6 complexes stimulated G(0)/G(1) to S-phase transition of liver cells.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
December 2006
Laboratory of Morphometry and Cardiovascular Morphology, State University of Rio de Janeiro (UERJ), Rio de Janeiro RJ 20551-030, Brazil.
We studied the effects of edible oils intake on the renal cortical structure of streptozotocin-induced diabetic (Db) and non-diabetic spontaneously hypertensive rats (SHR). Male SHR divided into 5 groups were studied during 6 weeks: one non-diabetic SHR group and four diabetic SHR groups (three groups received by gavage olive, palm or fish oil). Kidneys were analyzed by light microscopy and stereology.
View Article and Find Full Text PDFToxicol Appl Pharmacol
March 2006
Department of Toxicology, College of Pharmacy, The University of Louisiana at Monroe, 700 University Avenue, Sugar Hall # 306, Monroe, LA 71209-0470, USA.
Previously, we reported high hepatotoxic sensitivity of type 2 diabetic (DB) rats to three dissimilar hepatotoxicants. Additional work revealed that a normally nonlethal dose of CCl4 was lethal in DB rats due to inhibited compensatory tissue repair. The present study was conducted to investigate the importance of compensatory tissue repair in determining the final outcome of hepatotoxicity in diabetes, using another structurally and mechanistically dissimilar hepatotoxicant, thioacetamide (TA), to initiate liver injury.
View Article and Find Full Text PDFToxicol Appl Pharmacol
May 2001
Department of Toxicology, College of Pharmacy, The University of Louisiana at Monroe, Monroe, Louisiana 71209, USA.
Previously we have shown that hepatotoxicity of thioacetamide (TA) was increased in streptozotocin (STZ)-induced diabetic (DB) rats due to combined effects of enhanced bioactivation-based liver injury of TA and compromised liver tissue repair response. We have also shown that TA is primarily bioactivated by hepatic CYP2E1. The present study was done to further investigate the importance of liver tissue repair in determining the final outcome of hepatotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!