Conservation should benefit ecosystems, nonhuman organisms, and current and future human beings. Nevertheless, tension among these goals engenders potential ethical conflicts: conservationists' true motivations may differ from the justifications they offer for their activities, and conservation projects have the potential to disempower and oppress people. We reviewed the promise and deficiencies of integrating social, economic, and biological concerns into conservation, focusing on research in ecosystem services and efforts in community-based conservation. Despite much progress, neither paradigm provides a silver bullet for conservation's most pressing problems, and both require additional thought and modification to become maximally effective. We conclude that the following strategies are needed to make conservation more effective in our human-dominated world. (1) Conservation research needs to integrate with social scholarship in a more sophisticated manner. (2) Conservation must be informed by a detailed understanding of the spatial, temporal, and social distributions of costs and benefits of conservation efforts. Strategies should reflect this understanding, particularly by equitably distributing conservation's costs. (3) We must better acknowledge the social concerns that accompany biodiversity conservation; accordingly, sometimes we must argue for conservation for biodiversity's sake, not for its direct human benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1523-1739.2006.00570.x | DOI Listing |
J Cheminform
January 2025
Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK.
Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that 'stitches' the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein-ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode.
View Article and Find Full Text PDFBMC Biol
January 2025
CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Chengdu Botanical Garden, Chengdu Park Urban Plant Science Research Institute, Chengdu, 610083, Sichuan, China.
Background: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Technology Park of Sardinia, Bioecopest Srl, SP 55 Km 8.400, Tramariglio, Alghero, SS, Italy.
Background: The increasing availability of sequenced genomes has enabled comparative analyses of various organisms. Numerous tools and online platforms have been developed for this purpose, facilitating the identification of unique features within selected organisms. However, choosing the most appropriate tools can be unclear during the initial stages of analysis, often requiring multiple attempts to match the specific characteristics of the data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!