We have recently proposed that the addition of C2H2 to the cyclopentadienyl radical can lead to the rapid formation of the cycloheptatrienyl radical and, in succession, of the indenyl radical. These reactions represent an interesting and unexplored route for the enlargement of gas-phase cyclic species. In this work we report ab initio calculations we performed with the aim of investigating in detail the gas-phase reactivity of cycloheptatrienyl and indenyl radicals. We found that the reaction of the cycloheptatrienyl radical with atomic hydrogen can lead to its fast conversion into the more stable benzyl radical. This reaction pathway involves the intermediate formation of heptatriene, norcaradiene, and toluene. Successively we investigated whether this reaction mechanism can be extended to polycyclic aromatic hydrocarbons (PAHs). For this purpose we studied the reaction of C2H2 with the indenyl radical, which can be considered as a superior homologue of the cyclopentadienyl radical. This reaction proceeds through a pathway similar to that proposed for C5H5 but with a reaction rate about an order of magnitude smaller. The present calculations extend thus the previously proposed C5-C7-C9 mechanism to bicyclic PAH and suggest a fast route for the conversion of C5 into C6 cyclic radicals, mediated by the formation of C7 cyclic species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp067117f | DOI Listing |
mBio
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.
View Article and Find Full Text PDFChem Sci
December 2024
La Trobe University, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science Melbourne Victoria 3086 Australia
This perspective covers the chemistry of cyclopentadienyl cations from the first synthetic attempts generating transient variants to their successful isolation earlier this year. They are highly reactive species that researchers struggled to isolate and characterize that stifled efforts to explore their reactivity. The recent isolation of a cyclopentadienyl cation enabled characterization and reactivity studies that make this an exciting time in the area that will undoubtedly inspire research in cyclic four π-electron systems.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemistry, Brown University, Providence, RI, USA.
Disulfide bonds are ubiquitous molecular motifs that influence the tertiary structure and biological functions of many proteins. Yet, it is well known that the disulfide bond is photolabile when exposed to ultraviolet C (UVC) radiation. The deep-UV-induced S─S bond fragmentation kinetics on very fast timescales are especially pivotal to fully understand the photostability and photodamage repair mechanisms in proteins.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
The exclusion of immune cells from the tumor can limit the effectiveness of immunotherapy in triple negative breast cancer (TNBC). The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway plays a crucial role in priming adaptive anti-tumor immunity through the production of type I interferons (IFNs), facilitating the maturation of dendritic cells (DCs) and the function of T cells. Although the increased expression of programmed death-ligand 1 (PD-L1) upon STING activation is favorable for amplifying the efficacy of immune checkpoint inhibitors (ICIs) and realizing combination therapy, the penetration barrier remains a major obstacle.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Neurology and Center for Translational Neuro, and Behavioural Sciences (C-TNBS), Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, ER 6229, the Netherlands. Electronic address:
Soluble guanylate cyclase (sGC) stands as a pivotal regulatory element in intracellular signalling pathways, mediating the formation of cyclic guanosine monophosphate (cGMP) and impacting diverse physiological processes across tissues. Increased formation of reactive oxygen species (ROS) is widely recognized to modulate cGMP signalling. Indeed, oxidatively damaged, and therefore inactive sGC, contributes to poor vascular reactivity and more severe neurological damage upon stroke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!