Enhanced nonlinear optical effects with a tapered plasmonic waveguide.

Nano Lett

Center for Nanophotonics, FOM Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam, The Netherlands.

Published: February 2007

Infrared surface plasmon polaritons (SPPs) are concentrated in a laterally tapered planar Ag waveguide. The near field of SPPs excited with 1490 nm light at a Ag-sapphire interface is probed using the photoluminescence of upconverted Er ions at 550 and 660 nm. SPP interference patterns are observed that exhibit clear evidence of SPP concentration toward the taper end. The concentration leads to an enhancement of the upconversion luminescence intensity from Er energy levels that are populated by multiphoton processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl062440fDOI Listing

Publication Analysis

Top Keywords

enhanced nonlinear
4
nonlinear optical
4
optical effects
4
effects tapered
4
tapered plasmonic
4
plasmonic waveguide
4
waveguide infrared
4
infrared surface
4
surface plasmon
4
plasmon polaritons
4

Similar Publications

Survival parametric modeling for patients with heart failure based on Kernel learning.

BMC Med Res Methodol

January 2025

Department of Computer Science and Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.

Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models.

View Article and Find Full Text PDF

Co-assemblies of Silver Nanoclusters and Fullerenols With Enhanced Third-Order Nonlinear Optical Response.

Small Methods

January 2025

National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.

View Article and Find Full Text PDF

An FPGA-Based SiNW-FET Biosensing System for Real-Time Viral Detection: Hardware Amplification and 1D CNN for Adaptive Noise Reduction.

Sensors (Basel)

January 2025

Department of Computer Science, Faculty of Sciences and Humanities Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.

Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency.

View Article and Find Full Text PDF

In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.

View Article and Find Full Text PDF

This study evaluates the API 650 design procedure for steel storage tanks, incorporating nonlinear dynamic analysis with large deformation effects. Focusing on seismic vulnerability, the case study examines storage tanks proposed for construction in Naples, Italy, assessing their performance under site-specific seismic conditions. A target spectrum and 20 earthquake records were selected to reflect regional seismic characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!