Global influenza surveillance is one of the most effective strategies for containing outbreaks and preparing for a possible pandemic influenza. Since the end of 2003, highly pathogenic avian influenza viruses (HPAI) H5N1 have caused many outbreaks in poultries and wild birds from East Asia and have spread to at least 48 countries. For such a fast and wide-spreading virulent pathogen, prediction based on changes of micro- and macro-environment has rarely been evaluated. In this study, we are developing a new climatic approach by investigating the conditions that occurred before the H5N1 avian influenza outbreaks for early predicting future HPAI outbreaks and preventing pandemic disasters. The results show a temperature drop shortly before these outbreaks in birds in each of the Eurasian regions stricken in 2005 and 2006. Dust storms, like those that struck near China's Lake Qinghai around May 4, 2005, exacerbated the spread of this HPAI H5N1 virus, causing the deaths of a record number of wild birds and triggering the subsequent spread of H5N1. Weather monitoring could play an important role in the early warning of outbreaks of this potentially dangerous virus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794318 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000191 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!