Objective: Resection of large intraosseous sphenoid wing meningiomas is traditionally associated with significant morbidity. Rapid prototyping techniques have become widely used for treatment planning. Yet, the transfer of a treatment plan into the intraoperative situs strongly depends on the experience of the individual surgeon.

Clinical Presentation: Extensive resection with orbital decompression was planned and performed on the basis of rapid prototyping and surgical navigation techniques in a 44-year-old woman presenting with a large sphenoid wing meningioma on the right infiltrating the orbit.

Results: Tumor resection was simulated on a stereolithography model of the patient's head. The stereolithography model was scanned using computed tomography (CT) and the defect geometry was used to create a custom-made titanium implant. The implant consisted of a solid titanium core and a spot-welded titanium mesh surrounding the core, allowing for minor intraoperative adjustments of the implant size by reducing the mesh size. The stereolithography model with the incorporated implant was CT scanned again and the CT data were fused with the patient's original CT data. The implant borders indicating the resection borders were marked within the patient's CT data set. This treatment plan was transferred to an optical navigation system. Intraoperatively, tumor resection was performed using surgical navigation.

Conclusion: In the presented case report, the combination of computer-assisted planning using rapid prototyping techniques and image-guided surgery allowed for an extensive tumor resection precisely according to a preoperative treatment plan in a patient presenting with a large intraosseous sphenoid wing meningioma. A larger clinical series with a long-term follow-up period will be needed to determine the reproducibility.

Download full-text PDF

Source
http://dx.doi.org/10.1227/01.NEU.0000249235.97612.52DOI Listing

Publication Analysis

Top Keywords

sphenoid wing
16
wing meningioma
12
rapid prototyping
12
treatment plan
12
tumor resection
12
stereolithography model
12
case report
8
large intraosseous
8
intraosseous sphenoid
8
prototyping techniques
8

Similar Publications

Sphenoid wing meningiomas (SWM) frequently compress structures of the optic pathway, resulting in significant visual dysfunction characterized by vision loss and visual field deficits, which profoundly impact patients' quality of life (QoL), daily activities, and independence. The objective of this study was to assess the impact of SWM surgery on patient-reported outcome measures (PROMs) regarding postoperative visual function. The Visual Function Score Questionnaire (VFQ-25) is a validated tool designed to assess the impact of visual impairment on quality of life.

View Article and Find Full Text PDF

Objective: to study the anatomical feasibility of laser fiber insertion for interstitial thermal therapy via transorbital approach to the temporo-mesial structures (amygdala-hippocampus-parahippocampus complex).

Methods: Anatomical dissections were performed bilaterally on two human cadaveric heads via a transorbital approach, in which screws and laser fibers were used for magnetic resonance imaging-guided laser interstitial thermal therapy (MRIgLITT) assisted by neuronavigation. In addition, eight transorbital trajectories were simulated using the transorbital entry points obtained from a cadaveric radiological study of four patients previously operated on for mesial temporal lobe epilepsy.

View Article and Find Full Text PDF

The lateral pterygoid muscle (LPM), a critical component of the masticatory muscles, typically comprises upper (SLPM) and lower (ILPM) heads. However, it is essential to note that the LPM's structure is not a constant feature, as the number of bundles and their topography can vary. Moreover, additional heads, such as medial and middle heads, and unique-headed configurations of the LPM have been reported.

View Article and Find Full Text PDF

Chordoid meningioma, a rare WHO grade II tumor, is known for its aggressive behavior and high recurrence rate. We report a case of a 44-year-old woman with progressive left-sided weakness, where imaging revealed a 3.0 cm lesion in the right sphenoidal wing with significant midline shift and edema.

View Article and Find Full Text PDF

Objective: To devise a predictive model for estimating the requisite volume of the orbit in patients poised for resection of hyperostotic spheno-orbital meningiomas.

Material And Methods: The predictive regression model was conceived through the retrospective analysis of perioperative radiological data from 25 patients who initially underwent surgery at the Burdenko Neurosurgery Center for hyperostotic spheno-orbital meningiomas grade I. The model quality metrics were evaluated utilizing the performance library in the R programming language, including the Akaike Information Criterion, Bayesian Information Criterion, adjusted R-squared, Root Mean Squared Error, and Sigma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!