A synthetic time-delay circuit in mammalian cells and mice.

Proc Natl Acad Sci U S A

Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland.

Published: February 2007

Time-delay circuitries in which a transcription factor processes independent input parameters can modulate NF-kappaB activation, manage quorum-sensing cross-talk, and control the circadian clock. We have constructed a synthetic mammalian gene network that processes four different input signals to control either immediate or time-delayed transcription of specific target genes. BirA-mediated ligation of biotin to a biotinylation signal-containing VP16 transactivation domain triggers heterodimerization of chimeric VP16 to a streptavidin-linked tetracycline repressor (TetR). At increasing biotin concentrations up to 20 nM, TetR-specific promoters are gradually activated (off to on, input signal 1), are maximally induced at concentrations between 20 nM and 10 microM, and are adjustably shut off at biotin levels exceeding 10 microM (on to off, input signal 2). These specific expression characteristics with a discrete biotin concentration window emulate a biotin-triggered bandpass filter. Removal of biotin from the culture environment (input signal 3) results in time-delayed transgene expression until the intracellular biotinylated VP16 pool is degraded. Because the TetR component of the chimeric transactivator retains its tetracycline responsiveness, addition of this antibiotic (input signal 4) overrides biotin control and immediately shuts off target gene expression. Biotin-responsive immediate, bandpass filter, and time-delay transcription characteristics were predicted by a computational model and have been validated in standard cultivation settings or biopharmaceutical manufacturing scenarios using trangenic CHO-K1 cell derivatives and have been confirmed in mice. Synthetic gene circuitries provide insight into structure-function correlations of native signaling networks and foster advances in gene therapy and biopharmaceutical manufacturing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1796999PMC
http://dx.doi.org/10.1073/pnas.0606398104DOI Listing

Publication Analysis

Top Keywords

input signal
16
bandpass filter
8
biopharmaceutical manufacturing
8
input
6
biotin
6
synthetic time-delay
4
time-delay circuit
4
circuit mammalian
4
mammalian cells
4
cells mice
4

Similar Publications

Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing.

Nat Commun

January 2025

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.

Despite rapid developments of wearable self-powered sensors, it is still elusive to decouple the simultaneously applied multiple input signals. Herein, we report the design and demonstration of stretchable thermoelectric porous graphene foam-based materials via facile laser scribing for self-powered decoupled strain and temperature sensing. The resulting sensor can accurately detect temperature with a resolution of 0.

View Article and Find Full Text PDF

A sensitive fluorescence biosensor was developed for microcystin-LR (MC-LR) detection using H1, H2, and H3 DNA probes as sensing elements. The aptamer in H1 can recognize the target. H2 was labeled with FAM and BHQ.

View Article and Find Full Text PDF

Global practical tracking control via output feedback for more general nonlinear systems.

ISA Trans

January 2025

School of Electrical Engineering, University of Jinan, Jinan, Shandong 250022, China. Electronic address:

This paper focuses on the issue of global practical tracking control by output feedback for uncertain nonlinear systems with unknown control coefficients and unknown reference signal. Unlike other tracking works, the upper and lower bounds of the unknown control coefficients in the studied nonlinear system are not required to be known, while the nonlinearities are bounded by the unmeasured states multiplying an unknown constant, the polynomial-of-output and the polynomial-of-input. Inspired by related works, an adaptive tracking controller based on a new dynamic high gain has been successfully constructed by combining the universal control idea and the concept of dead-zone with backstepping technique, which effectively handles the impacts of multiple uncertainties.

View Article and Find Full Text PDF

Corticocortical (CC) projections in the visual system facilitate hierarchical processing of sensory information. In addition to direct CC connections, indirect cortico-thalamo-cortical (CTC) pathways through the pulvinar nucleus of the thalamus can relay sensory signals and mediate cortical interactions according to behavioral demands. While the pulvinar connects extensively to the entire visual cortex, it is unknown whether transthalamic pathways link all cortical areas or whether they follow systematic organizational rules.

View Article and Find Full Text PDF

Muscarinic cannabinoid suppression of excitation, a novel form of coincidence detection.

Pharmacol Res

January 2025

Gill Institute for Neuroscience; Dept. of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405. Electronic address:

Δ-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, acts in the brain primarily via cannabinoid CB1 receptors. These receptors are implicated in several forms of synaptic plasticity - depolarization-induced suppression of excitation (DSE), metabotropic suppression of excitation (MSE), long term depression (LTD) and activation-dependent desensitization. Cultured autaptic hippocampal neurons express all of these, illustrating the rich functional and temporal heterogeneity of CB1 at a single set of synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!