Recent studies have shown the participation of Gr-1(+) cells in many types of infections; however, the role played by these cells in the immune response to fungal pathogens is controversial. In this study we determined whether Gr-1(+) cells are involved in the protective immune response in systemic Histoplasma capsulatum infection. Depletion of Gr-1(+) cells using the monoclonal antibody (MAb) RB6-8C5 increased histoplasmosis severity and inhibited the subsequent development of a protective immune response. In addition to the increased fungal burden in lungs and spleens, the Th1 response was found to be unbalanced in these mice and the suppression of the cellular immune response seemed to be associated with increased nitric oxide production. Taken together, these results indicate that Gr-1(+) cell depletion at the beginning of infection allows yeast multiplication and increases mice mortality. This study improves the understanding of the role of Gr-1(+) cells on the protective immunity in histoplasmosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micinf.2006.10.007 | DOI Listing |
Theranostics
January 2025
Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China.
Intracerebral hemorrhage (ICH) is a devastating form of stroke with a lack of effective treatments. Following disease onset, ICH activates microglia and recruits peripheral leukocytes into the perihematomal region to amplify neural injury. Bruton's tyrosine kinase (BTK) controls the proliferation and survival of various myeloid cells and lymphocytes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
The heterogeneous form of malignancy in the myeloid lineage of normal hematopoietic stem cells (HSCs) is characterized as acute myeloid leukemia (AML). The t(9;11) reciprocal translocation (p22;q23) generates MLL-AF9 oncogene, which results in myeloid-based monoblastic AML with frequent relapse and poor survival. MLL-AF9 binds with the C-Myb promoter and regulates AML onset, maintenance, and survival.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, China.
Background: Ablation is one of the main methods for local treatment of hepatocellular carcinoma (HCC). Different from radiofrequency ablation (RFA), microwave ablation (MWA) is not limited by tissue conductivity, and can use multiple electrodes at the same time to improve ablation efficiency. In addition, MWA can form a larger ablation area, which makes it possible to completely ablate large HCC.
View Article and Find Full Text PDFJ Neuroinflammation
November 2024
Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China.
Background: Neuromyelitis optica spectrum disorder (NMOSD) is an autoantibody-triggered central nervous system (CNS) demyelinating disease that primarily affects the spinal cord, optic nerves and brainstem. Among the first responders to CNS injury, microglia are prominent players that drive NMOSD lesion formation. However, the key molecular switches controlling the detrimental activity of microglia in NMOSD are poorly understood.
View Article and Find Full Text PDFPharmacol Res
December 2024
Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!