Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1744-6163.2007.00108.x | DOI Listing |
Vitam Horm
January 2025
Department Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia. Electronic address:
The hypothalamus, in addition to controlling the main body's vital functions, is also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular pathways, including Ca signaling and neuronal excitability in the brain. Intrinsic electrophysiological properties of individual neurons and synaptic transmission between cells is disrupted in the central nervous system of old animals.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
J Adv Res
January 2025
School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China. Electronic address:
Background: Phospholipase C epsilon 1 (PLCε1) can hydrolyze phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-4-phosphate at the plasma membrane and perinuclear membrane in the cardiovascular system, producing lipid-derived second messengers. These messengers are considered prominent triggers for various signal transduction processes. Notably, diverse cardiac phenotypes have been observed in cardiac-specific and global Plce1 knockout mice under conditions of pathological stress.
View Article and Find Full Text PDFCells
January 2025
Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.
Phosphodiesterase (PDE) enzymes regulate intracellular signaling pathways crucial for brain development and the pathophysiology of neurological disorders. Among the 11 PDE subtypes, PDE4 and PDE5 are particularly significant due to their regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling, respectively, which are vital for learning, memory, and neuroprotection. This review synthesizes current evidence on the roles of PDE4 and PDE5 in neurological health and disease, focusing on their regulation of second messenger pathways and their implications for brain function.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Biology, Colorado State University, Fort Collins, CO, USA.
Decapod crustaceans regulate molting through steroid molting hormones, ecdysteroids, synthesized by the molting gland (Y-organ, YO). Molt-inhibiting hormone (MIH), a neuropeptide synthesized and secreted by the eyestalk ganglia, negatively regulates YO ecdysteroidogenesis. MIH signaling is mediated by cyclic nucleotide second messengers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!