We examined the biochemical and structural properties of oryzacystatin-II, a phytocystatin in rice (Oryza sativa L. japonica), under heat-stress conditions. The enzyme inhibitory reactivity of oryzacystatin-II was enhanced by heating in a temperature-dependent manner and reached a maximum level by heating at 65 degrees C for 10 min. Size-exclusion chromatography showed that oryzacystatin-II forms a homodimer at ambient temperature and that the enhancement of inhibitory reactivity is due to the conversion of the dimeric to a monomeric form. The monomeric form of oryzacystatin-II reverted to the dimer during storage at 4 degrees C, suggesting that dimerization is an intrinsic property of oryzacystatin-II. The affinity of the monomer for cysteine proteinases was significantly higher than that of the dimer. This is the first paper to describe the noncovalent dimerization for a cystatin under nonstress conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf062637tDOI Listing

Publication Analysis

Top Keywords

rice oryza
8
oryza sativa
8
sativa japonica
8
reactivity oryzacystatin-ii
8
inhibitory reactivity
8
monomeric form
8
oryzacystatin-ii
7
oryzacystatin-ii cystatin
4
cystatin rice
4
japonica dimeric
4

Similar Publications

A MACPF Protein OsCAD1 Balances Plant Growth and Immunity Through Regulating Salicylic Acid Homeostasis in Rice.

Plant Cell Environ

January 2025

State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang, China.

Unraveling the mechanisms behind plant growth and immunity contributes to effective crop improvement. Membrane attack complex/perforin (MACPF) domain proteins play vital roles in innate and adaptive immunity in vertebrates; however, their molecular functions in plants remain largely unexplored. Here, we isolated and characterized a rice mutant, Oryza sativa constitutively activated cell death 1 (oscad1), which exhibited a lesion mimic phenotype and growth inhibition with increased cell death, elevated ROS accumulation, and enhanced resistance to bacterial blight Xanthomonas oryzae pv.

View Article and Find Full Text PDF

Take a Deep BReath: Manipulating brassinosteroid homeostasis helps cereals adapt to environmental stress.

Plant Physiol

January 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.

Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained.

View Article and Find Full Text PDF

The aim of this study was to decipher the reprogramming of protective machineries and sulfur metabolism, as responses to time-dependent effect of fluoride stress for 10 and 20days in two indica rice (Oryza sativa ) varieties. Unregulated accumulation of fluoride via chloride channels (CLC1 and CLC2) in 10-day-old (cv. Khitish) and 20-day-old (cv.

View Article and Find Full Text PDF

Rice E3 ubiquitin ligases balance immunity and yield through non-proteolytic ubiquitination.

J Integr Plant Biol

January 2025

National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.

The rice E3 ubiquitin ligases OsCIE1 and IPI7 mediate the non-proteolytic polyubiquitination of the pattern-recognition receptor kinase OsCERK1 and the transcription factor IPA1, respectively, in response to Magnaporthe oryzae infection, thereby fine-tuning rice growth-immunity trade-offs.

View Article and Find Full Text PDF

The MYB61-STRONG2 module regulates culm diameter and lodging resistance in rice.

J Integr Plant Biol

January 2025

Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

Lodging reduces grain yield and quality in cereal crops. Lodging resistance is affected by the strength of the culm, which is influenced by the culm diameter, culm wall thickness, and cell wall composition. To explore the genetic architecture of culm diameter in rice (Oryza sativa), we conducted a genome-wide association study (GWAS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!