"Amide resonance" correlates with a breadth of C-N rotation barriers.

J Am Chem Soc

Department of Chemistry, California State University-Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311, USA.

Published: March 2007

Complete basis set calculations (CBS-QB3) were used to compute the CN rotation barriers for acetamide and eight related compounds, including acetamide enolate and O-protonated acetamide. Natural resonance theory analysis was employed to quantify the "amide resonance" contribution to ground-state electronic structures. A range of rotation barriers, spanning nearly 50 kcal/mol, correlates well to the ground-state resonance weights without the need to account for transition-state effects. Use of appropriate model compounds is crucial to gain an understanding of the structural and electronic changes taking place during rotation of the CN bond in acetamide. The disparate changes in bond length (DeltarCO << DeltarCN) are found to be consonant with the resonance model. Similarly, charge differences are consistent with donation from the nitrogen lone pair electrons into the carbonyl pi* orbital. Despite recent attacks on the resonance model, these findings demonstrate it to be a sophisticated and highly predictive tool in the chemist's arsenal.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0663024DOI Listing

Publication Analysis

Top Keywords

rotation barriers
12
"amide resonance"
8
resonance" correlates
4
correlates breadth
4
breadth c-n
4
rotation
4
c-n rotation
4
barriers complete
4
complete basis
4
basis set
4

Similar Publications

Women-identifying and women+ gender faculty (hereto described as women+ faculty) face numerous barriers to career advancement in medicine and biomedical sciences. Despite accumulating evidence that career development programming for women+ is critical for professional advancement and well-being, accessibility of these programs is generally limited to small cohorts, only offered to specific disciplines, or otherwise entirely unavailable. Opportunities for additional, targeted career development activities are imperative in developing and retaining women+ faculty.

View Article and Find Full Text PDF

Supporting rotational grazing systems with virtual fencing: paddock transitions, beef heifer performance, and stress response.

Animal

December 2024

Department of Crop Sciences, Grassland Science, Georg-August-University Göttingen, Von-Siebold-Strasse 8, 37075 Göttingen, Germany; Centre for Biodiversity and Sustainable Land Use, Büsgenweg 1, 37075 Göttingen, Germany.

Animal welfare is integral to sustainable livestock production, and pasture access for cattle is known to enhance welfare. Despite positive welfare impacts, high labour requirements hinder the adoption of sustainable grazing practices such as rotational stocking management. Virtual fencing (VF) is an innovative technology for simplified, less laborious grazing management and remote animal monitoring, potentially facilitating the expansion of sustainable livestock production.

View Article and Find Full Text PDF

Pequi Pulp () Oil-Loaded Emulsions as Cosmetic Products for Topical Use.

Polymers (Basel)

January 2025

Departamento de Engenharia de Materiais, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil.

The pequi () is a typical fruit from the Brazilian Cerrado. From it, pequi pulp oil is extracted, a valuable product for cosmetic applications due to its high levels of unsaturated fatty acids and carotenoids. Carotenoids are antioxidant compounds that are easily oxidized.

View Article and Find Full Text PDF

This study presents the design, modeling, and validation of a mixing screw for energy-efficient single-screw extrusion. The screw features a short length-to-diameter (L/D) ratio of 8:1 and incorporates double flights with variable pitch and counter-rotating mixing slots. These features promote enhanced plastication by breaking up the solid bed and improving thermal homogeneity through backflow mechanisms relieving a 3.

View Article and Find Full Text PDF

A Photocontrolled Molecular Rotor Based on Azobenzene-Strapped Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Triple-Decker.

Molecules

January 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex is reported. Electronic absorption and H NMR spectra manifested the reversible isomerization of the rotor between the configuration and the configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!