Removal of nitrogen and phosphorus in a combined A2/O-BAF system with a short aerobic SRT.

J Environ Sci (China)

School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.

Published: July 2007

A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A2/O-BAF) combined system was carried out to treat wastewater with lower C/N and C/P ratios. The A2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitrifying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1-4 mg/L nitrate nitrogen in the anoxic zone effluent of A2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1001-0742(06)60043-0DOI Listing

Publication Analysis

Top Keywords

a2/o process
24
phosphorus removal
16
combined system
12
anoxic zone
12
zone a2/o
12
nitrogen phosphorus
8
short aerobic
8
aerobic srt
8
baf effluent
8
removal combined
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!