High voltage electrical injuries.

Acta Chir Plast

Burn Centre, University Hospital, Brno, Czech Republic.

Published: March 2007

Between 1999 and 2005, a total of 41 patients were hospitalized at the Burn Centre of Brno University Hospital with high voltage electrical injuries, representing 6.06% of the total number of patients treated at the Burn Intensive Care Unit (ICU) for extensive burn trauma. The average age of patients with serious electrotraumas was 27.29 years. The youngest patient was 9 years old, the oldest 64 years. Lethality amounted to 17.07% of the total number of patients. The article clearly shows the sinister dimension (a frighteningly high number of cases) of high voltage electrical injuries suffered outside work context in the vicinity of railway tracks and affecting in particular the youngest age groups--children.

Download full-text PDF

Source

Publication Analysis

Top Keywords

high voltage
12
voltage electrical
12
electrical injuries
12
total number
8
number patients
8
high
4
injuries 1999
4
1999 2005
4
2005 total
4
patients
4

Similar Publications

Achieving high ionic conductivity and stable performance at low temperatures remains a significant challenge in sodium-metal batteries (SMBs). In this study, we propose a novel electrolyte design strategy that elucidates the solvation structure-function relationship within mixed solvent systems. A mixture of diglyme and 1,3-dioxolane was developed to optimize the solvation structure towards superior low-temperature electrolyte.

View Article and Find Full Text PDF

The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.

View Article and Find Full Text PDF

Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).

View Article and Find Full Text PDF

Unveiling next-generation organic photovoltaics: Quantum mechanical insights into non-fullerene donor-acceptor compounds.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan; Dry Lab (Janjua.XYZ), Physical Chemistry and Computational Modelling (PCCM), Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan. Electronic address:

Organic photovoltaics (OPVs) have improved greatly in recent years in pursuit for efficient and sustainable energy conversion methods. Specifically, utilizing quantum chemistry approaches such as density functional theory (DFT), the electronic structures, energy levels, and charge transport characteristics of donor-π-acceptor (D-π-A) systems based on non-fullerene donor and acceptor molecules have been examined and synthesized. Non-fullerene acceptors offer several advantages over traditional fullerene-based materials, such as enhanced light absorption, modifiable energy levels, and reduced recombination losses.

View Article and Find Full Text PDF

Synergistic high-entropy phosphides with phosphorus vacancies as robust bifunctional catalysts for efficient water splitting.

J Colloid Interface Sci

January 2025

State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 PR China. Electronic address:

High-entropy phosphides (HEPs) have garnered increasing interest as innovative electrocatalysts for water splitting, highlighted by their distinctive catalytic activity, elemental synergy, and tunable electronic configuration. Herein, a novel electrode comprising CoNiCuZnFeP nanocubes with rich phosphorus vacancies was fabricated through coprecipitation and phosphorization two-step method. The synergistic interaction among metal elements and the modulation of the electronic configuration by phosphorus vacancies augmentation enhance the catalytic performance for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!