Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents a study of a nonlinear reaction-diffusion population model in fragmented environments. The model is set on R(N), with periodic heterogeneous coefficients obtained using stochastic processes. Using a criterion of species persistence based on the notion of principal eigenvalue of an elliptic operator, we provided a precise numerical analysis of the interactions between habitat fragmentation and species persistence. The obtained results clearly indicated that species persistence strongly tends to decrease with habitat fragmentation. Moreover, comparing two stochastic models of landscape pattern generation, we observed that in addition to local fragmentation, a more global effect of the position of the habitat patches also influenced species persistence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00285-007-0076-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!