AI Article Synopsis

  • Thermotoga hypogea is a highly heat-loving bacterium that thrives at 90°C, using carbohydrates and peptides to produce several byproducts, including acetate and ethanol.
  • The alcohol dehydrogenase enzyme from T. hypogea, which has a molecular mass of about 40 kDa and is sensitive to oxygen, can regain activity after treatment with specific chemicals.
  • This enzyme is thermostable and works best at temperatures close to 95°C, showing versatility in using various alcohols and aldehydes, primarily functioning to convert aldehydes into alcohols.

Article Abstract

Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90 degrees C. It uses carbohydrates and peptides as carbon and energy sources to produce acetate, CO(2), H(2), L-alanine and ethanol as end products. Alcohol dehydrogenase activity was found to be present in the soluble fraction of T. hypogea. The alcohol dehydrogenase was purified to homogeneity, which appeared to be a homodimer with a subunit molecular mass of 40 +/- 1 kDa revealed by SDS-PAGE analyses. A fully active enzyme contained iron of 1.02 +/- 0.06 g-atoms/subunit. It was oxygen sensitive; however, loss of enzyme activity by exposure to oxygen could be recovered by incubation with dithiothreitol and Fe(2+). The enzyme was thermostable with a half-life of about 10 h at 70 degrees C, and its catalytic activity increased along with the rise of temperature up to 95 degrees C. Optimal pH values for production and oxidation of alcohol were 8.0 and 11.0, respectively. The enzyme had a broad specificity to use primary alcohols and aldehydes as substrates. Apparent K (m) values for ethanol and 1-butanol were much higher than that of acetaldehyde and butyraldehyde. It was concluded that the physiological role of this enzyme is likely to catalyze the reduction of aldehydes to alcohols.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-007-0217-xDOI Listing

Publication Analysis

Top Keywords

alcohol dehydrogenase
12
extremely thermophilic
8
thermotoga hypogea
8
enzyme
5
purification characterization
4
characterization iron-containing
4
alcohol
4
iron-containing alcohol
4
dehydrogenase extremely
4
thermophilic bacterium
4

Similar Publications

Background: Recombinant proteins produced in the cell factories are used in biological research, pharmaceutical production, and biochemical and agricultural applications. Molecular chaperones, such as heat shock proteins (Hsps), are co-expressed with recombinant proteins to enhance their yield, stability, and activity. When () is used as a cell factory, Hsps are the frequently used co-expression partners.

View Article and Find Full Text PDF

A comprehensive understanding of microbial community dynamics is fundamental to the advancement of environmental microbiology, human health, and biotechnology. Metaproteomics, defined as the analysis of all proteins present within a microbial community, provides insights into these complex systems. Microbial adaptation and activity depend to an important extent on newly synthesized proteins (nP), however, the distinction between nP and bulk proteins is challenging.

View Article and Find Full Text PDF

Substrate expansion of Geotrichum candidum alcohol dehydrogenase towards diaryl ketones by mutation.

Appl Microbiol Biotechnol

December 2024

Department of Life Science and Technology: Tokyo Kogyo Daigaku Seimei Rikogakuin Seimei Rikogakukei, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midzeori-Ku, Yokohama, 226-8501, Japan.

Chiral diaryl alcohols, such as (4-chlorophenyl)(pyridin-2-yl)methanol, are important intermediates for pharmaceutical synthesis. However, using alcohol dehydrogenases (ADHs) in the asymmetric reduction of diaryl ketones to produce the corresponding alcohols is challenging due to steric hindrance in the substrate binding pockets of the enzymes. In this study, the steric hindrance of the ADH from Geotrichum candidum NBRC 4597 (G.

View Article and Find Full Text PDF

ALDH Enzymes and Hematological Diseases: A Scoping Review of Literature.

Discov Med

December 2024

Department of Biological Hematology, Tours University Hospital, 37000 Tours, France.

Aldehyde dehydrogenases (ALDHs) constitute a group of enzymes that catalyze the oxidation of aldehydes to carboxylic acids. The human ALDH superfamily, including 19 different isoenzymes (ALDH1A1, ALDH1A2, ALDH1A3, AHDH1B1, ALDH1L1, ALDH1L2, ALDH2, ALDH3A1, ALDH3A2, ALDH3B1, ALDH3B2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, ALDH8A1, ALDH9A1, ALDHA16A1, ALDH18A1), displays different key physiological and toxicological functions, with specific tissue expression and substrate specificity. Several studies have established that ALDH are interesting markers for the identification and quantification of human hematopoietic stem cells and cancer stem cells, notably leukemic stem cells.

View Article and Find Full Text PDF

Protective Effects of Polysaccharides From (Turner) C. Agardh Against Alcohol-Induced LO2 Cell Damage.

Food Sci Nutr

December 2024

College of Food Science and Technology Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution Zhanjiang China.

The study aimed to explore the protective impact of polysaccharide derived from (Turner) C. Agardh (SHP) against ethanol-induced injury in LO2 hepatocytes, along with its potential mechanism of action. A model of alcoholic injury in LO2 cells was established to assess the shielding effect of SHP against liver injury induced by alcohol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!