The cell surface hydrophobicity and adhesion to abiotic and cellular surfaces was tested in five clinical strains of Acinetobacter baumannii isolated from catheter tips. Biochemical and molecular characteristics of these strains were also studied. Hydrophobicity was characterized by a test for affinity to xylene. Adhesion to abiotic surfaces (polystyrene, formica, latex and glass) was evaluated in Petri plates using the stamp technique. Buccal epithelial cells were used for tests of adhesion to cellular surfaces. Adhesion to the catheter was evaluated by repeatedly rinsing the catheters and rolling them over nutrient agar. Molecular typing of the strains was done by the ERIC-PCR technique. The degree of hydrophobicity of the strains varied from hydrophobic to hydrophilic. All the strains adhered to the cell surfaces and to the catheters, and three of them strongly adhered to latex, polystyrene and formica. Catheter adhesion was reduced by meropenem. We found a direct relationship between the degree of bacterial hydrophobicity and adhesion to the abiotic surfaces, but not with adhesion to cellular surfaces, which suggests that different mechanisms are involved in adherence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s1413-86702006000500009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!