Purpose: To develop a microarray for the rabbit that can be used for ocular gene expression research.
Methods: Messenger RNA was isolated from anterior segment tissues (cornea, conjunctiva, and iris) and posterior segment tissues (lens, retina, and sclera) of rabbit eyes and used to create two independent cDNA libraries through the NEIBank project. Clones from each of these libraries were sequenced from both the 5' and 3' ends. These sequences and those from the National Center for Biotechnology Information (NCBI) taxonomy database for rabbit were combined and electronically assembled into a set of unique nonoverlapping continuous sequences (contigs). For each contig, a homology search was performed using BLASTX and BLASTN against both the NCBI NR and NT databases to provide gene annotation. Unique contigs were sent to Agilent Technologies, where 60 base oligonucleotide probes were designed and synthesized, in situ, on two different arrays in an 8 array x 1900 element format. Glaucoma filtration surgery was performed on one eye of six rabbits. After 14 days, tissue was harvested from the conjunctiva and Tenon's capsule of both the surgically treated and untreated control eyes. Total RNA from each sample was labeled with cyanine dyes and hybridized to our custom microarrays.
Results: Of the 3,154 total probes present on the two arrays, 2,522 had a signal value above the background. The expression of 315 genes was significantly altered by glaucoma filtration surgery. Genes whose expression was altered included proteins associated with inflammatory response, defense response, and proteins involved in synthesis of the extracellular matrix.
Conclusions: The results of this rabbit microarray study are consistent with those from other wound healing studies, indicating that this array can provide valid information on broad patterns of gene expression. This is the first microarray available for rabbit studies and is a valuable tool that can be used to study molecular events in the eye.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536532 | PMC |
Scand J Urol
January 2025
Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, USA.
Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.
Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.
View Article and Find Full Text PDFNew Phytol
January 2025
Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
Mediator, a transcriptional coactivator, regulates plant growth and development by interacting with various transcriptional regulators. MEDIATOR15 (MED15) is a subunit in the Mediator complex potentially involved in developmental control. To uncover molecular functions of Arabidopsis MED15 in development, we searched for its interactors.
View Article and Find Full Text PDFNew Phytol
January 2025
Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
Lupins are promising protein crops that accumulate toxic quinolizidine alkaloids (QAs) in the seeds, complicating their end-use. QAs are synthesized in green organs (leaves, stems, and pods) and a subset of them is transported to the seeds during fruit development. The exact sites of biosynthesis and accumulation remain unknown; however, mesophyll cells have been proposed as sources, and epidermal cells as sinks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!