Although intracellular cholesterol levels are known to influence the proteolysis of beta-amyloid precursor protein (APP), the effect of specific genes that regulate cholesterol metabolism on APP processing remains poorly understood. The cholesterol transporter ABCG1 facilitates cholesterol efflux to HDL and is expressed in brain. Notably, the human ABCG1 gene maps to chromosome 21q22.3, and individuals with Down syndrome (DS) typically manifest with Alzheimer's disease (AD) neuropathology in their 30s. Here, we demonstrate that expression of ABCG1 enhances amyloid-beta protein (Abeta) production in transfected HEK cells in a manner that requires functional cholesterol transporter activity. ABCG1-expressing cells also exhibit increased secreted APP (sAPP)alpha and sAPPbeta secretion and display increased cell surface-associated APP. These results suggest that ABCG1 increases the availability of APP as a secretase substrate for both the amyloidogenic and nonamyloidogenic pathways. In vivo, ABCG1 mRNA levels are 2-fold more abundant in DS brain compared with age- and sex-matched normal controls. Finally, both Abeta and sAPPalpha levels are increased in DS cortex relative to normal controls. These findings suggest that altered cholesterol metabolism and APP trafficking mediated by ABCG1 may contribute to the accelerated onset of AD neuropathology in DS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1194/jlr.M600542-JLR200 | DOI Listing |
Neurotherapeutics
January 2025
Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA. Electronic address:
Spinal cord injury (SCI) significantly alters gene expression, potentially impeding functional recovery. This study investigated the effects of atorvastatin, a widely prescribed cholesterol-lowering drug, on gene expression and functional recovery in a chronic murine SCI model. Female C57BL/6J mice underwent moderate 0.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Cholesterol is vital for nerve processes. Changes in cholesterol homeostasis lead to neurodegeneration and Alzheimer's disease (AD). In recent years, extensive research has confirmed the influential role of adipose tissue mesenchymal stem cells (MSCs) in managing AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Shenzhen Bay Laboratory, Shenzhen, Guandong, China.
Background: The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. We wanted to explore the interactome of STING on the organelles during its trafficking route and to understand the regulatory network of STING signaling.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Cleveland Clinic, Cleveland, OH, USA.
Background: Apolipoprotein E (ApoE) is the primary cholesterol and lipid transporting apolipoprotein in the central nervous system (CNS) and is the greatest genetic risk factor for Alzheimer's Disease (AD). There are three main isoforms differing by single amino acid changes: ε3 is "neutral", ε4 is "risk" (Cys112Arg), and ε2 is "resilience" (Arg158Cys). Rare forms (Christchurch, Jacksonville) have also been proposed as resilience alleles, while an ε4-like allele (with Arg61Thr) is present in non-human primates without AD risk.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre for Studies on Prevention of Alzheimer's disease (StoP-AD Centre), Douglas Mental Health Institute, Montreal, QC, Canada.
Background: Clusterin is a major cholesterol transporter in the central nervous system (CNS) and different SNPs in the CLU gene have been associated with Alzheimer's disease (AD) risk. The rs11136000_T variant in the CLU gene has been shown to decrease the risk of AD. In this work, we investigate the role of the CLU rs11136000_T protective variant and of the clusterin protein throughout different phases of the AD spectrum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!