F-box proteins constitute a large family in eukaryotes and are characterized by a conserved F-box motif (approximately 40 amino acids). As components of the Skp1p-cullin-F-box complex, F-box proteins are critical for the controlled degradation of cellular proteins. We have identified 687 potential F-box proteins in rice (Oryza sativa), the model monocotyledonous plant, by a reiterative database search. Computational analysis revealed the presence of several other functional domains, including leucine-rich repeats, kelch repeats, F-box associated domain, domain of unknown function, and tubby domain in F-box proteins. Based upon their domain composition, they have been classified into 10 subfamilies. Several putative novel conserved motifs have been identified in F-box proteins, which do not contain any other known functional domain. An analysis of a complete set of F-box proteins in rice is presented, including classification, chromosomal location, conserved motifs, and phylogenetic relationship. It appears that the expansion of F-box family in rice, in large part, might have occurred due to localized gene duplications. Furthermore, comprehensive digital expression analysis of F-box protein-encoding genes has been complemented with microarray analysis. The results reveal specific and/or overlapping expression of rice F-box protein-encoding genes during floral transition as well as panicle and seed development. At least 43 F-box protein-encoding genes have been found to be differentially expressed in rice seedlings subjected to different abiotic stress conditions. The expression of several F-box protein-encoding genes is also influenced by light. The structure and function of F-box proteins in plants is discussed in light of these results and the published information. These data will be useful for prioritization of F-box proteins for functional validation in rice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1851844 | PMC |
http://dx.doi.org/10.1104/pp.106.091900 | DOI Listing |
World J Gastrointest Oncol
January 2025
Department of Orthopaedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing 230032, Jiangsu Province, China.
Background: Previous cellular studies have demonstrated that elevated expression of Cx43 promotes the degradation of cyclin E1 and inhibits cell proliferation through ubiquitination. Conversely, reduced expression results in a loss of this capacity to facilitate cyclin E degradation. The ubiquitination and degradation of cyclin E1 may be associated with phosphorylation at specific sites on the protein, with Cx43 potentially enhancing this process by facilitating the phosphorylation of these critical residues
Aim: To investigate the correlation between expression of Cx43, SKP1/Cullin1/F-box (SCF), p-cyclin E1 (ser73, thr77, thr395) and clinicopathological indexes in colon cancer.
FASEB J
January 2025
Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
The correct synthesis and degradation of proteins are vital for numerous biological processes in the human body, with protein degradation primarily facilitated by the ubiquitin-proteasome system. The SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, a member of the Cullin-RING E3 ubiquitin ligase (CRL) family, plays a crucial role in mediating protein ubiquitination and subsequent 26S proteasome degradation during normal cellular metabolism. Notably, SCF is intricately linked to the pathogenesis of various diseases, including malignant tumors.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.
SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
In this study, the drought-responsive gene from barley was transferred to , and overexpression lines were obtained. The phenotypic characteristics of the transgenic plants, along with physiological indicators and transcription level changes of stress-related genes, were determined under drought treatment. Under drought stress, transgenic plants overexpressing exhibited enhanced drought tolerance and longer root lengths compared to wild-type plants.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!