Purpose: A phase I/II study on carbon ion radiotherapy for Stage I non-small-cell lung cancer (NSCLC) was first conducted between 1994 and 1999 and determined the optimal dose. Second, a Phase II study using the optimal dose was performed. The purpose of the present study was to clarify the local control and 5-year survival rates.

Methods And Materials: Between April 1999 and December 2000, 50 patients with 51 primary lesions were treated. Using a fixed dose of 72 GyE in nine fractions over 3 weeks, the primary tumors were irradiated with carbon ion beams alone. The average age of the patients was 74.5 years. Thirty-three (66%) of these were medically inoperable. Local control and survival were determined by using the Kaplan-Meier method and the data were statistically processed by using the log-rank test.

Results: All patients were observed for a minimum of 5 years or until death with a median follow-up time of 59.2 months (range, 6.0-83.0 months). The local control rate for all patients was 94.7%. The patients' 5-year cause-specific survival rate was 75.7% (IA: 89.4; IB: 55.1), and overall survival 50.0% (IA: 55.2; IB: 42.9). No toxic reactions in the lung greater than Grade 3 were detected.

Conclusions: Carbon ion radiotherapy, a new treatment modality with superior benefits in terms of quality of life and activity of daily living, has been proven as a valid alternative to surgery for Stage I NSCLC and to offer particular benefits, especially for elderly and inoperable patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2006.10.006DOI Listing

Publication Analysis

Top Keywords

carbon ion
16
local control
12
stage non-small-cell
8
non-small-cell lung
8
lung cancer
8
ion beams
8
ion radiotherapy
8
optimal dose
8
patients
5
curative treatment
4

Similar Publications

Anion exchange membranes (AEMs) as a kind of important functional material are widely used in fuel cells. However, synthetic AEMs generally suffer from low conductivity, poor alkaline stability, and poor dimensional stability. Constructing efficient ion transport channels is widely regarded as one of the most effective strategies for developing AEMs with high conductivity and low swelling ratio.

View Article and Find Full Text PDF

Numerous challenges are posed by the extra-terrestrial environment for space farming and various technological growth systems are being developed to allow for microgreens' cultivation in space. Microgreens, with their unique nutrient profiles, may well integrate the diet of crew members, being a natural substitute for chemical food supplements. However, the space radiation environment may alter plant properties, and there is still a knowledge gap concerning the effects of various types of radiation on plants and specifically on the application of efficient and rapid methods for selecting new species for space farming, based on their radio-resistance.

View Article and Find Full Text PDF

Etching Chemistry Process Optimization of Ethylene Diluted with Helium (CH/He) in Interconnect Integration.

Micromachines (Basel)

November 2024

School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.

This study explores the effects of different passivation gases on the properties of polymers formed on aluminum (Al) sidewalls during the etching process in Al-based interconnect structures. The research compares the use of nitrogen (N) and ethylene diluted with helium (CH/He) as passivation gases, focusing on the resulting polymer's composition, thickness, and strength, as well as the levels of residual chlorine post-etch. The findings reveal that using CH leads to the formation of a thinner, weaker polymer with lower chlorine residue compared to the thicker, stronger polymer formed with N.

View Article and Find Full Text PDF

It is necessary to overcome the relatively low conductivity of ionic liquids (ILs) caused by steric hindrance effects to improve their ability to passivate defects and inhibit ion migration to boost the photovoltaic performance of perovskite solar cells (PSCs). Herein, we designed and prepared a kind of low-concentration 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF) diluted with propylene carbonate (PC) via an ultrasonic technique (PC/IL). The decrease in the decomposition temperature related to the IL part and the increase in the sublimation temperature related to the PC part facilitated the use of PC/IL to effectively delay the crystallization process and passivate the defects in multiple ways to obtain high-quality perovskite films.

View Article and Find Full Text PDF

Nickel disulfide (NiS) nanoparticles are encapsulated within nitrogen and sulfur co-doped carbon nanosheets, which are grown onto carbon nanofibers to form an array structure (NiS/C@CNF), resulting in a self-supporting film. This encapsulated structure not only prevents the agglomeration of NiS nanoparticles, but also memorably buffers its volume changes during charge/discharge cycles, thereby maintaining structural integrity. The nitrogen and sulfur co-doping enhances electronic conductivity and facilitates the faster ion transport of the carbon backbone, improving the low conductivity of the NiS/C@CNF anodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!