Adaptation of Venezuelan equine encephalitis virus lacking 51-nt conserved sequence element to replication in mammalian and mosquito cells.

Virology

Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019, USA.

Published: June 2007

AI Article Synopsis

Article Abstract

Replication of alphaviruses strongly depends on the promoters located in the plus- and minus-strands of virus-specific RNAs. The most sophisticated promoter is encoded by the 5' end of the viral genome. This RNA sequence is involved in the initiation of translation of viral nsPs, and synthesis of both minus- and plus-strands of the viral genome. Part of the promoter, the 51-nt conserved sequence element (CSE), is located in the nsP1-coding sequence, and this limits the spectrum of possible mutations that can be performed. We designed a recombinant Venezuelan equine encephalitis virus genome, in which the promoter and nsP1-coding sequences are separated. This modification has allowed us to perform a wide variety of genetic manipulations, without affecting the amino acid sequence of the nsPs, and to further investigate 51-nt CSE functioning. The results of this study suggest a direct interaction of the amino terminal domain of nsP2 with the 5' end of the viral genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810489PMC
http://dx.doi.org/10.1016/j.virol.2007.01.009DOI Listing

Publication Analysis

Top Keywords

viral genome
12
venezuelan equine
8
equine encephalitis
8
encephalitis virus
8
51-nt conserved
8
conserved sequence
8
sequence element
8
genome promoter
8
sequence
5
adaptation venezuelan
4

Similar Publications

Aim: Romania is currently facing a prolonged measles outbreak. The aim of the study was to analyse the circulating human measles virus (HMV) strains by combining whole genome sequencing (WGS) with phylogenetic analysis, with a focus on the haemagglutinin gene.

Methods: We conducted an observational study in the first five months of 2024, in which 168 patients diagnosed with measles were randomly included.

View Article and Find Full Text PDF

Background: Sugarcane is cultivated globally and affected by more than 125 pathogens, which lead to various plant diseases. In recent years, high-throughput sequencing (HTS)-based genome analyses have been broadly adopted for the discovery of both characterized and un-characterized viruses from plant samples. In this study, the HTS data of sugarcane pooled sample retrieved from sequence read archive (SRA) were de novo re-assembled using CLC Genomic Workbench.

View Article and Find Full Text PDF

Impact of ions, pH and the nature of substrate on the structure and activity of a robust single-stranded DNA binding (SSB)-like protein from Phi11.

Arch Microbiol

January 2025

Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.

The gene gp13 in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1).

View Article and Find Full Text PDF

Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 SARS-CoV-2 Alpha genomes (B.1.

View Article and Find Full Text PDF

Development of a latency model for HIV-1 subtype C and the impact of long terminal repeat element genetic variation on latency reversal.

J Virus Erad

December 2024

HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.

Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!