Mechanisms underlying cadmium (Cd) detoxification were compared in two aquatic macrophytes commonly used in phytoremediation, namely Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms. To simulate Cd pollution in the open environment, plants growing in outdoor artificial lakes were exposed for 21d to either 25 or 100microM Cd, in two consecutive years. Toxicity symptoms were absent or mild in both species. Metal accumulation was much higher in the roots of P. stratiotes, whereas in E. crassipes a comparatively higher fraction was translocated to the leaves. In both species, Cd was neither included in phenolic polymers or Ca-oxalate crystals, nor altered the levels of Cd-complexing organic acids. Glutathione levels were constitutively remarkably higher and much more responsive to Cd exposure in P. stratiotes than in E. crassipes. Abundant phytochelatin synthesis occurred only in P. stratiotes, both in roots and in leaves. In E. crassipes, on the other side, the constitutive levels of some antioxidant enzymes and ascorbate were higher and more responsive to Cd than in P. stratiotes. Thus, in these two aquatic plants grown in the open, different detoxification mechanisms might come into play to counterbalance Cd acute stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2006.12.092DOI Listing

Publication Analysis

Top Keywords

aquatic macrophytes
8
outdoor artificial
8
artificial lakes
8
stratiotes crassipes
8
higher responsive
8
stratiotes
5
compensatory mechanisms
4
mechanisms metal-accumulating
4
metal-accumulating aquatic
4
macrophytes exposed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!