Molecular electronics and nanoscale chemical sensors could allow the construction microscopic sensors capable of detecting patterns of chemicals in a fluid. Information from a large number of such devices flowing passively in the bloodstream allows estimates of the properties of tiny chemical sources in a macroscopic tissue volume. We use estimates of plausible device capabilities to evaluate their performance for typical chemicals released into the blood by tissues in response to localized injury or infection. We find that the devices can readily discriminate a single cell-sized chemical source from the background chemical concentration, providing high-resolution sensing in both time and space. By contrast, such a chemical source would be difficult to distinguish from background when diluted throughout the blood volume as obtained with a blood sample.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2006.10.004 | DOI Listing |
J Hazard Mater
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India. Electronic address:
This study focuses on developing an affordable and cost-effective colorimetric solid-state optical sensor for target-specific naked-eye detection of Pb, offering significant potential for real-time environmental monitoring and public health applications. The indigenously developed porous polymer monolithic template, poly(lauryl methacrylate-co-ethylene glycol dimethacrylate) (poly(LMC-co-EGDMA) is infused with a chromoionophoric probe, i.e.
View Article and Find Full Text PDFACS Sens
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MDMaastricht, The Netherlands.
Malaria is a major public healthcare concern worldwide, representing a leading cause of death in specific regions. The gold standard for diagnosis is microscopic analysis, but this requires a laboratory setting, trained staff, and infrastructure and is therefore typically slow and dependent on the experience of the technician. This study introduces, for the first time, a biomimetic sensing platform for the direct detection of the disease.
View Article and Find Full Text PDFAdv Mater
January 2025
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China.
The application of physical fields is crucial for droplet generation and manipulation, underpinning technologies like printing, microfluidic biochips, drug delivery, and flexible sensors. Despite advancements, precise micro/nanoscale droplet generation and accurate microfluidic reactions remain challenging. Inspired by the liquid ejection mechanisms in microscopic organisms, an electrostatic manipulator for the precise capture, emission, and transport of microdroplets is proposed.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Department of Chemistry, Govt. College Women University, Arfa Kareem Road, Faisalabad 38000 Pakistan. Electronic address:
The importance of developing multifunctional nanomaterials for sensing technologies is increasing with the arrival of nanotechnology. In this study, we describe the introduction of novel nanoprobe electro-active material into the architecture of an electrochemical immuno-sensor. Based on the electrochemical immuno-sensor, functionalized tin oxide/graphitic carbon nitride nanocomposite (fSnO/g-CN) was synthesized and then analyte specific anti-aflatoxin M monoclonal antibody (AFM-ab) combined to form an electro-active nanoprobe (fSnO/g-CN/AFM-ab).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!