The adherence and viability of neural cells (primary cortical cells) from rat embryo on silicon wafers with varying surface roughness (10 to 250 nm) at the nano scale were investigated. The roughnesses were achieved by using chemical etching. Atomic force microscopy was utilized to determine surface roughness. We examined the adherence and viability of neural cells by using scanning electron microscopy and fluorescence immunoassaying. Antineuron-specific enolase antibody was used for immunostaining. Results from this investigation show that for these specific neural cells, there is an optimum surface roughness range, R(a) = 20 to 100 nm, that promotes cell adhesion and longevity. For silicon-based devices, this optimum surface roughness will be desirable as a suitable material/neuron interface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2005.03.007DOI Listing

Publication Analysis

Top Keywords

surface roughness
20
neural cells
12
adherence viability
8
viability neural
8
optimum surface
8
surface
5
roughness
5
influence nanoscale
4
nanoscale surface
4
neural
4

Similar Publications

A Wenzel Interfaces Design for Homogeneous Solute Distribution Obtains Efficient and Stable Perovskite Solar Cells.

Adv Mater

January 2025

College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.

View Article and Find Full Text PDF

Running-In Behavior and Failure Mechanism Between AgCuNi Alloy and Au-Electroplated Layer.

Sensors (Basel)

December 2024

State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China.

To avoid wear and tear of the slip ring due to electrical corrosion, the slip ring needs to undergo the running-in process under atmospheric conditions without current after assembly. To address the urgent demand for long-service capability space conductive slip rings in the aerospace field, the running-in behavior and failure mechanism between the AgCuNi alloy and Au-electroplated layer are investigated using a ball-on-disc tribometer in this paper. The results show that the transfer film composed of Au plays an important role in modifying the friction during the sliding process.

View Article and Find Full Text PDF

Fast-neutron reactors are an important representative of Generation IV nuclear reactors, and due to the unique structure and material properties of fast reactor fuel, traditional mechanical cutting methods are not applicable. In contrast, laser cutting has emerged as an ideal alternative. However, ensuring the stability of optical fibers and laser cutting heads under high radiation doses, as well as maintaining cutting quality after irradiation, remains a significant technical challenge.

View Article and Find Full Text PDF

Characterization and Nutritional Intervention Effects of Type 5 Resistant Starch in Hyperlipidemia Mice.

Foods

January 2025

School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.

Numerous reports have indicated that the type 3 resistant starch (RS3) derived from can regulate lipid metabolism. However, it remains unclear whether the type 5 resistant starch (RS5) exhibits similar effects. In this study, RS5 was prepared from native starch and lauric acid through a hydrothermal method for the first time, and its nutritional intervention effects on hyperlipidemia in mice were investigated.

View Article and Find Full Text PDF

Green peas, with their high moisture content, require effective drying techniques to extend shelf life while preserving quality. Traditional drying methods face challenges due to the dense structure of the seed coat and wax layer, which limits moisture migration. This study investigates cold plasma (CP) pretreatment as a novel approach to enhance drying kinetics and maintain the quality attributes of green peas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!