Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation.

Annu Rev Immunol

Discovery Research, Schering-Plough Biopharma, Palo Alto, California 94304-1104, USA.

Published: June 2007

Long-term resistance to many infections depends on the innate ability of the immune system to coordinate the development of antigen-specific adaptive responses. Deficiencies in these events can result in increased susceptibility to pathogens, whereas an inability to regulate an appropriate response can lead to devastating pathological conditions. For over a decade, interleukin (IL)-12 has been recognized as the canonical cytokine that links innate and adaptive immunity, and with the discovery of IL-23 and IL-27 as cytokines related to IL-12, there has been a concerted effort to understand the relationship between these factors. The results emerging from these studies have provided fundamental new insights into the developmental pathways that promote the differentiation and function of CD4(+) T helper cells and offer a dramatically altered perspective on the cause and prevention of autoimmune disease. In this review, we aim to highlight the discoveries that have led to our current understanding of the biology of IL-23 and IL-27 in the context of their role in resistance to infection, immune-mediated inflammation, and cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.immunol.22.012703.104758DOI Listing

Publication Analysis

Top Keywords

il-23 il-27
12
biology il-23
8
discovery biology
4
il-27 functionally
4
functionally distinct
4
distinct regulators
4
regulators inflammation
4
inflammation long-term
4
long-term resistance
4
resistance infections
4

Similar Publications

Background: Excessive inflammation in sepsis causes microvascular dysfunction associated with organ dysfunction and high mortality. The present studies aimed to examine the therapeutic potential of linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor in a clinically relevant polymicrobial sepsis model in mice.

Methods: Sepsis was induced by cecal ligation and puncture (CLP).

View Article and Find Full Text PDF

BRAF pediatric low-grade gliomas frequently transform into high-grade gliomas (HGG) and poorly respond to chemotherapy, resulting in high mortality. Although combined BRAF and MEK inhibition (BRAFi+MEKi) outperforms chemotherapy, ∼70% of BRAF HGG patients are therapy resistant and undergo unbridled tumor progression. BRAF glioma have an immune-rich microenvironment suggesting that they could be responsive to immunotherapy but effects of BRAFi+MEKi on anti-tumor immunity are unclear.

View Article and Find Full Text PDF

Introduction The human immunodeficiency virus (HIV) primarily targets clusters of differentiation 4 (CD4)+ T cells and other immune cells, leading to immune dysfunction. Cytokines such as interleukin (IL)-23 and IL-27 have complex roles in HIV-associated disease progression, affecting viral replication and immune responses. This study aimed to explore the correlation between HIV-related CD4 lymphopenia and the inflammatory cytokines IL-23 and IL-27 in treatment-naive HIV patients.

View Article and Find Full Text PDF

Fermented foods and ingredients, including furmenties derived from lactic acid bacteria (LAB) in dairy products, can modulate the immune system. Here, we describe the use of reconstituted skimmed milk powder to generate novel fermentates from strains SC232, SC234, SC212, and SC210, and from strains SC209 and SC229, and demonstrate, using in vitro assays, that these fermentates can differentially modulate cytokine secretion via bone-marrow-derived dendritic cells (BMDCs) when activated with either the viral ligand loxoribine or an inflammatory stimulus, lipopolysaccharide. Specifically, we demonstrate that SC232 and SC234 increase cytokines IL-6, TNF-α, IL-12p40, IL-23, IL-27, and IL-10 and decrease IL-1β in primary bone-marrow-derived dendritic cells (BMDCs) stimulated with a viral ligand.

View Article and Find Full Text PDF

One vision-threatening side effect of systematic diabetes mellitus is diabetic retinopathy (DR). Recent studies have revealed that the development and progression of DR depend critically on inflammation resulting from diabetes. By attracting leukocytes to endothelium, the higher production of the inflammatory mediators induces degeneration of retinal capillaries, hence increasing vascular permeability and thrombosis probability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!