Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Expanded polytetrafluoroethylene (ePTFE) was chemically modified to retard the growth of Staphylococcus aureus bacteria. This was accomplished by microwave plasma reactions in the presence of maleic anhydride (MA) to create acid functional groups on ePTFE surfaces, followed by esterification reactions with 200 and 600 molecular weight linear polyethylene glycol (PEG). Such surfaces were utilized for further reactions with penicillin (PEN) through etherification reactions to create anti-microbial surfaces. These reactions resulted in surface morphological changes, and spectroscopic analysis using attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR) revealed the formation of ester linkages resulting from reactions between PEN and PEG functionalities. Antibacterial activities were evaluated by a series of experiments where PEN-modified ePTFE specimens were immersed in a liquid aureus culture, and the bacteria growth was quantified by measuring % absorbance of the suspension at 600 nm wavelength. The lowest absorbance was observed for the solution containing PEN-PEG-MA-ePTFE specimens, thus showing highly effective anti-bacterial activity toward gram-positive Staphylococcus aureus bacteria. To our best knowledge, this is the first study that shows PEN-ePTFE surface modifications that are effective against gram-positive aureus bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm061050k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!