The structure of the Ca--alginate junction zones was investigated with X-ray scattering on gels prepared with different methods. Fiber diffraction reveals the popular egg-box model may not be the only possible structure for the junction zones. The (001) reflection, which should be extinguished due to 2/1 helical conformation in the egg-box model, was observed. This was further confirmed by the measurements on Ca--alginate gel beads prepared at different pH where large pieces were formed through a relatively slow process, which leads to a higher crystallinity and a more perfect ordering. The results suggest a 3/1 helical conformation is more proper for Ca--alginate gels formed slowly. This does not exclude the possibility for the 2/1 helical conformation in fast gelatinized Ca--alginate in which the 2/1 helix is a metastable form. Comparing the X-ray scattering results of the fresh, dehydrated, and rehydrated gels, a reversible aggregation of junction zones is found during dehydration and rehydration. The different stabilities of initial bonds and bonds formed during drying are speculated to be the contribution of MG block or short G blocks in the junction zones.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm060550aDOI Listing

Publication Analysis

Top Keywords

junction zones
16
egg-box model
12
helical conformation
12
x-ray scattering
8
2/1 helical
8
reexamining egg-box
4
model calcium-alginate
4
gels
4
calcium-alginate gels
4
gels x-ray
4

Similar Publications

Deepening the Role of Pectin in the Tissue Assembly Process During Tomato Grafting.

Plants (Basel)

December 2024

Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain.

Cell walls play essential roles in cell recognition, tissue adhesion, and wound response. In particular, pectins as cell-adhesive agents are expected to play a key role in the early stages of grafting. To test this premise, this study focused on examining the dynamics of the accumulation and degree of methyl-esterification of pectic polysaccharides at the graft junctions using tomato autografts as an experimental model.

View Article and Find Full Text PDF

Objective: To investigate the characteristics of three-dimensional distribution of subchondral fracture lines on the surface of the osteonecrosis femoral head, and to discuss the underlying mechanisms that contribute to its collapse.

Methods: We retrospectively analyzed computed tomography (CT) images from 75 patients (comprising a total of 77 femoral heads) diagnosed with Association Research Circulation Osseous (ARCO) stage IIIA or IIIB femoral head necrosis. The three-dimensional structures of both the femoral head and the subchondral fracture line were reconstructed and subsequently fitted into normal femoral head model.

View Article and Find Full Text PDF

The formation and performance tuning mechanism of starch-based hydrogels.

Carbohydr Polym

February 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China. Electronic address:

Starch-based hydrogels, characterized by their three-dimensional network structures, are increasingly explored for their biodegradability, low cost, and abundance of modifiable hydroxyl groups. However, a comprehensive understanding of the mechanisms behind the formation and property modulation of these hydrogels has not been systematically described. Drawing from literature of the past decade, this review provides insights into designing multifunctional starch-based hydrogels through various gelation mechanism, crosslinking strategies, and second-network structure.

View Article and Find Full Text PDF

Aims: Limb salvage surgery (LSS) is the primary treatment option for primary bone malignancy. It involves the removal of bone and tissue, followed by reconstruction with endoprosthetic replacements (EPRs) to prevent amputation. Trabecular metal (TM) collars have been developed to encourage bone ingrowth (osseointegration (OI)) into EPRs.

View Article and Find Full Text PDF

Examining macro-level traffic crashes considering nonlinear and spatiotemporal spillover effects.

Accid Anal Prev

December 2024

School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, PR China. Electronic address:

Understanding the impacts of traffic crashes is essential for safety management and proactive safety protection. Current studies often hold the assumption of linearity and spatial dependence, which may lead to underestimated results. To address these gaps, this study considers both nonlinear and spatiotemporal spillover effects to explore the intricate relationships between vehicular crashes and their influencing factors at a macro level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!