Reopening of the occluded artery is the primary therapeutic goal in hyperacute ischemic stroke. Systemic treatment with tissue recombinant plasminogen activator (tPA) has been shown to be beneficial at least in a 3-hour door to needle window. Intra-arterial thrombolysis is favorable and opens the window of treatment up to at least 6 h but consequences invasive intra-arterial angiography in a high number of patients, of whom a significant number do not finally receive thrombolysis. The combination of ultrasound with thrombolytic agents may enhance the potential benefit by means of enzyme-mediated thrombolysis. When ultrasound is applied externally through skin or chest, attenuation will be very low. Attenuation, however, is significantly higher if penetration through the skull is required. Attenuation is frequency dependent, with ultrasound intensity being <10% of the output intensity for diagnostic frequencies (>1 MHz). This ratio nearly reverses in the kiloHertz range (>500 kHz). Ultrasound insonation is efficient for accelerating enzymatic thrombolysis within a wide range of intensities, from 0.5W/cm2 (MI approximately 0.3) to several watts per square centimeter, particularly in the nonfocused ultrasound field. Insonation with ultrasound increased tPA-mediated thrombolysis up to 20% in a static model, while it enhanced the recanalization rate from 30 to 90% in a flow model. Results from embolic rat models suggest that low-frequency ultrasound with 0.6W/cm2 significantly reduces infarct volume compared to pure tPA treatment. Safety of ultrasound exposure of the brain for therapeutic purposes has to address hemorrhage, heating, and direct tissue damage. Since animal studies suggested no increase of bleeding rate or harm to the blood-brain barrier, a clinical phase II study applying low-frequency ultrasound at approximately 300 kHz found a high number of secondary hemorrhages. Heating depends critically on the characteristics of the ultrasound. The most significant heating of the brain tissue itself is >1 degrees C per hour using a 2W/cm2 probe; however, no significant heating could be found when using an emission protocol pulsing the ultrasound. The current experimental data helps to identify the optimal ultrasound characteristics for sonothrombolysis and supports the hypothesis combined treatment being a perspective in optimizing thrombolytic therapy in acute stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000092396 | DOI Listing |
Ultrasonics
January 2025
Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland. Electronic address:
Ultrasound shear wave elastography (SWE) is widely used in clinical applications for non-invasive measurements of soft tissue viscoelasticity. The study of tissue viscoelasticity often involves the analysis of shear wave phase velocity dispersion curves, which show how the phase velocity varies with frequency or wavelength. In this study, we propose an alternative method to the two-dimensional Fourier transform (2D-FT) and Phase Gradient (PG) methods for shear wave phase velocity estimation.
View Article and Find Full Text PDFHealth Phys
January 2025
Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL.
Ionizing radiation on the skin has the potential to cause various sequelae affecting quality of life and even leading to death due to multi-system failure. The development of radiation dermatitis is attributed to oxidative damage to the skin's basal layer and alterations in immune response, leading to inflammation. Past studies have shown that [18F]F-2-fluoro-2-deoxyglucose positron emission tomography-computed tomography ([18F]F-FDG PET/CT) can be used effectively for the detection of inflammatory activity, especially in conditions like hidradenitis suppurativa, psoriasis, and early atherosclerosis.
View Article and Find Full Text PDFChaos
January 2025
College of Science, Civil Aviation University of China, Tianjin 300300, China.
Adolescent idiopathic scoliosis (AIS), which typically occurs in patients between the ages of 10 and 18, can be caused by a variety of reasons, and no definitive cause has been found. Early diagnosis of AIS or timely recognition of progression is crucial for the prevention of spinal deformity and the reduction of the risk of surgery or postponement. However, it remains a significant challenge.
View Article and Find Full Text PDFPrenat Diagn
January 2025
Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia.
Objective: The first objective is to develop a nuchal thickness reference chart. The second objective is to compare rule-based algorithms and machine learning models in predicting small-for-gestational-age infants.
Method: This retrospective study involved singleton pregnancies at University Malaya Medical Centre, Malaysia, developed a nuchal thickness chart and evaluated its predictive value for small-for-gestational-age using Malaysian and Singapore cohorts.
Diagn Interv Radiol
January 2025
Erzincan Binali Yıldırım University Faculty of Medicine, Department of Radiology, Erzincan, Türkiye.
Radiography is a field of medicine inherently intertwined with technology. The dependency on technology is very high for obtaining images in ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI). Although the reduction in radiation dose is not applicable in US and MRI, advancements in technology have made it possible in CT, with ongoing studies aimed at further optimization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!